Abstract Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA’s manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17β-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish.
more »
« less
Loss of Function of Vasoactive-intestinal Peptide Alters Sex Ratio and Reduces Male Reproductive Fitness in Zebrafish
Abstract Vasoactive-intestinal peptide (Vip) is a pleiotropic peptide with a wide range of distribution and functions. Zebrafish possess 2 isoforms of Vip (a and b), in which Vipa is most homologous to the mammalian form. In female zebrafish, Vipa can stimulate LH secretion from the pituitary but is not essential for female reproduction, as vipa−/− females display normal reproduction. In contrast, we have found that vipa−/− males are severely subfertile and sex ratio of offspring is female-biased. By analyzing all aspects of male reproduction with wild-type (WT) males, we show that the testes of vipa−/− are underdeveloped and contain ∼70% less spermatids compared to WT counterparts. The sperm of vipa−/− males displayed reduced potency in terms of fertilization (by ∼80%) and motility span and duration (by ∼50%). In addition, vipa−/− male attraction to WT females was largely nonexistent, indicating decreased sexual motivation. We show that vipa mRNA and protein is present in Leydig cells and in developing germ cells in the testis of WT, raising the possibility that endogenous Vipa contributes to testicular function. Absence of Vipa in vipa−/− males resulted in downregulation of 3 key genes in the androgen synthesis chain in the testis, 3β-hsd, 17β-hsd1, and cyp11c1 (11β-hydrogenase), associated with a pronounced decrease in 11-ketotestosterone production and, in turn, compromised reproductive fitness. Altogether, this study establishes a crucial role for Vipa in the regulation of male reproduction in zebrafish, like in mammals, with the exception that Vipa is also expressed in zebrafish testis.
more »
« less
- Award ID(s):
- 1947541
- PAR ID:
- 10526671
- Publisher / Repository:
- DOI PREFIX: 10.1210
- Date Published:
- Journal Name:
- Endocrinology
- Volume:
- 165
- Issue:
- 8
- ISSN:
- 1945-7170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the development process of male and female mosquitoes provides important basic information for sterile insect release programmes and is important for improving other vector control strategies. However, little is known about the molecular mechanisms that distinguish male from female‐specific developmental processes in this species. We used IlluminaRNA‐seq to identify sex‐specific genes during pupal and adult stages. One hundred and forty‐seven genes were expressed only in pupal males, 56 genes were expressed in adult males and another 82 genes were commonly expressed in both male samples. In addition, 26 genes were expressed only in the pupal females, 163 genes were found in the adult females and only one gene was expressed in both female samples. A further quantitative real‐time PCR validation of selected genes from the RNA sequencing (RNA‐seq) analysis confirmed upregulation of those genes in a sex‐specific manner, including: fibrinogen and fibronectin, a zinc finger protein, phospholipase A(2) and a serine protein for female pupae; venom allergen 3, a perlecan, testis‐specific serine/threonine‐protein kinase 1, testis‐specific serine/threonine‐protein kinase 6 and cytochrome c‐2 for male pupae; a salivary protein, D7 protein precursor, trypsin 7 precursor, D7 protein and nanos for female adults; and tetraspanin F139, cytosol aminopeptidase, testis‐specific serine/threonine‐protein kinase 1, a testis‐specific serine/threonine‐protein kinase 6 and a C‐type lectin for male adults. These findings provide insight into the development and physiology ofCulexmosquitoes, which will help in the development of more effective control methods for these disease vectors.more » « less
-
Abstract Female reproductive maturation is a critical life-history milestone, initiating an individual’s reproductive career. Studies in social mammals have often focused on how variables related to nutrition influence maturation age in females. However, parallel investigations have identified conspicuous male-mediated effects in which female maturation is sensitive to the presence and relatedness of males. Here, we evaluated whether the more “classic” socioecological variables (i.e., maternal rank, group size) predict maturation age in wild geladas—a primate species with known male-mediated effects on maturation and a grassy diet that is not expected to generate intense female competition. Females delayed maturation in the presence of their fathers and quickly matured when unrelated, dominant males arrived. Controlling for these male effects, however, higher-ranking daughters matured at earlier ages than lower-ranking daughters, suggesting an effect of within-group contest competition. However, contrary to predictions related to within-group scramble competition, females matured earliest in larger groups. We attribute this result to either: 1) a shift to “faster” development in response to the high infant mortality risk posed by larger groups; or 2) accelerated maturation triggered by brief, unobserved male visits. While earlier ages at maturation were indeed associated with earlier ages at first birth, these benefits were occasionally offset by male takeovers, which can delay successful reproduction via spontaneous abortion. In sum, rank-related effects on reproduction can still occur even when socioecological theory would predict otherwise, and males (and the risks they pose) may prompt female maturation even outside of successful takeovers.more » « less
-
Abstract Effects of global climate change on population persistence are often mediated by life‐history traits of individuals, especially the timing of somatic growth, reproductive development, and reproduction itself. These traits can vary among age groups and between the sexes, a result of differential life‐history tactics and levels of lifetime reproductive investment. Unfortunately, the trait data necessary for revealing sex‐specific breeding behaviors and use of breeding cues over reasonably large geographic areas remain sparse for most taxa. In this study, we assembled and analyzed a new reproductive trait base for the North American deer mouse (Peromyscus maniculatus) from digitized natural history specimens and field censuses. We used the data to reconstruct sex‐specific breeding phenologies and their drivers within and among North American ecoregions. Male and female phenologies varied across the geographic range of this species, with discordance in timing and intensity being highest in regions of lower seasonality (and longer breeding seasons). Reliance on environmental variables as breeding cues also appeared to vary in a sex‐specific manner, being most similar for photoperiod and least similar for temperature (positive male response and negative female response); in addition, model validation indicated that phenological models generalized better for males than for females. Finally, our individual‐level trait data also show that male reproductive investment (quantified as relative testis size) varies across the vastly different abiotic and social (i.e., female breeding) contexts studied here. By harmonizing across a broad set of digital data resources, we demonstrate the potential to uncover drivers of phenological variation within species and inform global change predictions at multiple scales of biological organization.more » « less
-
Abstract Bacterial endosymbionts manipulate reproduction in arthropods to increase their prevalence in the host population. One such manipulation is cytoplasmic incompatibility (CI), wherein the bacteria sabotage sperm in infected males to reduce the hatch rate when mated with uninfected females, but zygotes are ‘rescued’ when that male mates with an infected female. In the spiderMermessus fradeorum(Linyphiidae),Rickettsiellasymbionts cause variable levels of CI. We hypothesised that temperature affects the strength of CI and its rescue inM. fradeorum, potentially mediated by bacterial titre. We rearedRickettsiella‐infected spiders in two temperature conditions (26°C vs. 20°C) and tested CI induction in males and rescue in females. In incompatible crosses between infected males and uninfected females, the hatch rate from warm males was doubled (mean ± standard error = 0.687 ± 0.052) relative to cool males (0.348 ± 0.046), indicating that CI induction is weaker in warm males. In rescue crosses between infected females and infected males, female rearing temperature had a marginal effect on CI rescue, but the hatch rate remained high for both warm (0.960 ± 0.023) and cool females (0.994 ± 0.004). Bacterial titre, as measured by quantitative polymerase chain reaction, was lower in warm than cool spiders, particularly in females, suggesting that bacterial titre may play a role in causing the temperature‐mediated changes in CI.more » « less
An official website of the United States government
