skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of an efficient, effective, and economical technology for proteome analysis
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.  more » « less
Award ID(s):
1817651 2244127
PAR ID:
10526789
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Cell Reports Methods
Volume:
4
Issue:
6
ISSN:
2667-2375
Page Range / eLocation ID:
100796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mass spectrometry (MS)-based proteomics has enabled the identification and quantification of thousands of proteins from complex proteomes in a single experiment. However, its performance for mass-limited proteome samples ( e.g. , single cells and tissue samples from laser capture microdissection) is still not satisfying. The development of novel proteomic methodologies with better overall sensitivity is vital. During the last several years, substantial technical progress has been achieved for the preparation and liquid-phase separation-MS characterization of mass-limited proteome samples. In this review, we summarize recent technological progress of sample preparation, liquid chromatography (LC)-MS, capillary zone electrophoresis (CZE)-MS and MS instrumentation for bottom-up proteomics of trace biological samples, highlight some exciting applications of the novel techniques for single-cell proteomics, and provide a very brief perspective about the field at the end. 
    more » « less
  2. Abstract Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid‐phase separations. Native proteomics should provide the most accurate bird's‐eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well‐purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400 kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra‐high mass range (UHMR) Orbitrap mass spectrometer. The nCZE‐MS technique enabled the measurement of a 115‐kDa standard protein complex while consuming only about 0.1 ng of protein material. nCZE‐MS analysis of anE.colicell lysate detected 72 proteoforms or protein complexes in a mass range of 30–400 kDa in a single run while consuming only 50‐ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes. 
    more » « less
  3. Abstract While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeonHaloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation,N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics. 
    more » « less
  4. Abstract Data from genomics, proteomics, structural biology and cryo-electron microscopy are integrated into a structural illustration of a cross section through an entire JCVI-syn3.0 minimal cell. The illustration is designed with several goals: to inspire excitement in science, to depict the underlying scientific results accurately, and to be feasible in traditional media. Design choices to achieve these goals include reduction of visual complexity with simplified representations, use of orthographic projection to retain scale relationships, and an approach to color that highlights functional compartments of the cell. Given that this simple cell provides an attractive laboratory for exploring the central processes needed for life, several functional narratives are included in the illustration, including division of the cell and the first depiction of an entire cellular proteome. The illustration lays the foundation for 3D molecular modeling of this cell. 
    more » « less
  5. The first proteomics analysis of a colonial tunicate (Botryllus schlosseri) was carried out to support development of a DIA assay library and quantitative proteomics for this species. Deep proteome coverage (up to 4930 protein groups and 20,984 unique peptides in a single sample) was achieved, which enabled construction of a QC filtered DIA assay library consisting of nearly 4000 proteins that are represented by at least 3 unique peptides, each by at least 4 transitions. This library was used to compare protein abundances of two field populations and one lab-reared B. schlosseri population. Relative protein abundance data indicate that lab-rearing leads to greater proteome changes than those observed between distantly located field populations in Southern California and Northern Washington. STRING analysis revealed functions that are enriched in specific populations and proteins that are least and most variable within a given population. 
    more » « less