skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Programmatic and Scalable Approach to Making Data Management Machine-Actionable
The data management plan (DMP), while seen by many as an ancillary document during a grant application, is a rich source of contextual information that is key to ensuring researchers, funders, and institutions follow the best possible and most appropriate research data management (RDM) practices. Unfortunately, the current practice is to transmit this information to the funder as a PDF or Word file through their web portals. As optimizing internal workflows and information sharing is a priority across the research space, retooling DMPs as machine-readable and machine-actionable will enable leveraging of key information to build RDM strategies collectively. Similarly, there is a growing need to streamline workflows, reuse information and reduce the burden on researchers.  more » « less
Award ID(s):
2132549 2004642
PAR ID:
10526864
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Data Science Journal
Date Published:
Journal Name:
Data science journal
Volume:
22
ISSN:
1683-1470
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is strong agreement across the sciences that replicable workflows are needed for computational modeling. Open and replicable workflows not only strengthen public confidence in the sciences, but also result in more efficient community science. However, the massive size and complexity of geoscience simulation outputs, as well as the large cost to produce and preserve these outputs, present problems related to data storage, preservation, duplication, and replication. The simulation workflows themselves present additional challenges related to usability, understandability, documentation, and citation. These challenges make it difficult for researchers to meet the bewildering variety of data management requirements and recommendations across research funders and scientific journals. This paper introduces initial outcomes and emerging themes from the EarthCube Research Coordination Network project titled “What About Model Data? - Best Practices for Preservation and Replicability,” which is working to develop tools to assist researchers in determining what elements of geoscience modeling research should be preserved and shared to meet evolving community open science expectations. Specifically, the paper offers approaches to address the following key questions: • How should preservation of model software and outputs differ for projects that are oriented toward knowledge production vs. projects oriented toward data production? • What components of dynamical geoscience modeling research should be preserved and shared? • What curation support is needed to enable sharing and preservation for geoscience simulation models and their output? • What cultural barriers impede geoscience modelers from making progress on these topics? 
    more » « less
  2. Abstract As the scale of biological data generation has increased, the bottleneck of research has shifted from data generation to analysis. Researchers commonly need to build computational workflows that include multiple analytic tools and require incremental development as experimental insights demand tool and parameter modifications. These workflows can produce hundreds to thousands of intermediate files and results that must be integrated for biological insight. Data-centric workflow systems that internally manage computational resources, software, and conditional execution of analysis steps are reshaping the landscape of biological data analysis and empowering researchers to conduct reproducible analyses at scale. Adoption of these tools can facilitate and expedite robust data analysis, but knowledge of these techniques is still lacking. Here, we provide a series of strategies for leveraging workflow systems with structured project, data, and resource management to streamline large-scale biological analysis. We present these practices in the context of high-throughput sequencing data analysis, but the principles are broadly applicable to biologists working beyond this field. 
    more » « less
  3. Constructing and executing reproducible workflows is fundamental to performing research in a variety of scientific domains. Many of the current commercial and open source solutions for workflow en- gineering impose constraints—either technical or budgetary—upon researchers, requiring them to use their limited funding on expensive cloud platforms or spend valuable time acquiring knowledge of software systems and processes outside of their domain expertise. Even though many commercial solutions offer free-tier services, they often do not meet the resource and architectural requirements (memory, data storage, compute time, networking, etc) for researchers to run their workflows effectively at scale. Tapis Workflows abstracts away the complexities of workflow creation and execution behind a web-based API with a simplified workflow model comprised of only pipelines and tasks. This paper will de- tail how Tapis Workflows approaches workflow management by exploring its domain model, the technologies used, application architecture, design patterns, how organizations are leveraging Tapis Workflows to solve unique problems in their scientific workflows, and this projects’s vision for a simple, open source, extensible, and easily deployable workflow engine. 
    more » « less
  4. Scientific research and development campaigns are materialized by workflows of applications executing on high-performance computing (HPC) systems. These applications con-sist of tasks that can have inter- or intra-application flows of data to achieve the research goals successfully. These dataflows create dependencies among the tasks and cause resource con-tention on shared storage systems, thus limiting the aggregated I/O bandwidth achieved by the workflow. However, these I/O performance issues are often solved by tedious and manual efforts that demand holistic knowledge about the data dependencies in the workflow and the information about the infrastructure being utilized. Taking this into consideration, we design DFMan, a graph-based dataflow management and optimization framework for maximizing I/O bandwidth by leveraging the powerful storage stack on HPC systems to manage data sharing optimally among the tasks in the workflows. In particular, we devise a graph-based optimization algorithm that can leverage an intuitive graph representation of dataflow- and system-related information, and automatically carry out co-scheduling of task and data placement. According to our experiments, DFMan optimizes a wide variety of scientific workflows such as Hurricane 3D on Cloud Model 1 (CM1), Montage Carina Nebula (NGC3372), and an emulated dataflow kernel of the Multiscale Machine-learned Modeling Infrastructure (MuMMI I/O) on the Lassen supercomputer, and improves their aggregated I/O bandwidth by up to 5.42 x, 2.12 x and 1.29 x, respectively, compared to the baseline bandwidth. 
    more » « less
  5. In response to the growing federal mandates for data management and sharing, the California Digital Library (CDL) and the Association of Research Libraries (ARL) have launched a pilot project to test new workflows at 10 U.S. universities. The project utilizes machine-actionable DMPs (maDMPs) to streamline processes, improve communication, and ensure compliance with federal requirements. This lightning talk will discuss the pilot by exploring three case studies that showcase the use of generative AI for crafting compliant data management plans, maDMPs for deploying computing and storage resources, and tracking research outputs through integration with internal data management platforms. 
    more » « less