Secondary ion mass spectrometry techniques are used to study trace elements in organic samples where matrix compositions vary spatially. This study was conducted to develop calibrations for lithium content and lithium isotope measurements in kerogen. Known concentrations of Li ions (6Li and 7Li) were implanted into organic polymers, with a range of H/C and O/C ratios similar to kerogen, along with glassy carbon (SPI Glas‐22) and silicate glass (NIST SRM 612). Results show that Li content calibration factors (K*) are similar for carbonaceous samples when analysed using a 5kV secondary ion accelerating voltage. Using a 9 kV secondary ion accelerating voltage, K* factors are negatively correlated with the sample O content, changing ~ 30% between 0 and 15 oxygen atomic %. Thus, to avoid the matrix effect related to O content, using a 5 kV secondary ion accelerating voltage is best for quantification of Li contents based on 7Li+/12C+ ratios. Under these analytical conditions, Li ppm (atomic) = (132 ( 8) × 7Li+/12C+) × 12C atom fraction of the sample measured. Lithium isotope ratio measurements of SPI Glas‐22 and NIST SRM 612 are within uncertainty; however, the organic polymer samples as a group show a 10‰ higher δ7Li than NIST SRM 612.
more »
« less
Progress in High-Precision Mass Measurements of Light Ions
Significant advances in Penning trap measurements of atomic masses and mass ratios of the proton, deuteron, triton, helion, and alpha-particle have occurred in the last five years. These include a measurement of the mass of the deuteron against 12C with 8.5 × 10−12 fractional uncertainty; resolution of vibrational levels of H2+ as mass and the application of a simultaneous measurement technique to the H2+/D+ cyclotron frequency ratio, yielding a deuteron/proton mass ratio at 5 × 10−12; new measurements of HD+/3He+, HD+/T+, and T+/3He+ leading to a tritium beta-decay Q-value with an uncertainty of 22 meV, and atomic masses of the helion and triton at 13 × 10−12; and a new measurement of the mass of the alpha-particle against 12C at 12 × 10−12. Some of these results are in strong disagreement with previous values in the literature. Their impact in determining a precise proton/electron mass ratio and electron atomic mass from spectroscopy of the HD+ molecular ion is also discussed.
more »
« less
- Award ID(s):
- 1912095
- PAR ID:
- 10526886
- Publisher / Repository:
- MPDI
- Date Published:
- Journal Name:
- Atoms
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2218-2004
- Page Range / eLocation ID:
- 1-20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The light element 3He is produced in copious amounts during the first three minutes after the Big Bang. The 3He abundance is then modified primarily by nucleosynthesis in stars, whereby low-mass stars (< 2 solar masses) are expected to produce 3He due to the astration of deuterium. The higher temperatues in more massive stars fuse 3He completely into 4He thus destroying 3He. Measurements of 3He are made via observations of the hyperfine transition of 3He+ at 3.46 cm. Observations of 3He+ in HII regions located throughout the Milky Way disk reveal very little variation in the 3He/H abundance ratio — the "3He Plateau", indicating that the net effect of 3He production in stars is negligible. This is in contrast to much higher 3He/H abundance ratios found in some planetary nebula (PNe). This discrepancy is known as the "3He Problem." One solution to this problem is that thermohaline mixing occurs just above the hydrogen-burning shell to process 3-Helium: 3He(3He, 2p)4He. Thermohaline mixing is a double-diffusive instability that occurs in oceans and is also called thermohaline convection. We discuss how more accurate observations of the 3He/H abundance ratio can constrain stellar evolution models that include thermohaline mixing.more » « less
-
ABSTRACT Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.more » « less
-
Experimental studies of the collisions of heavy nuclei at relativistic energies have established the properties of the quark–gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons1–4. In this state, matter behaves as a nearly inviscid fluid5 that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the particles produced, creating a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton–proton (p+p) and proton–nucleus (p+A) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton–gold (p+Au), deuteron–gold (d+Au) and helium–gold (3He+Au) collisions at a nucleon–nucleon centre-of-mass energy sNN−−−√ = 200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide the best simultaneous description of these measurements.more » « less
-
ABSTRACT This is the second in a series of papers in which we use JWST Mid Infrared Instrument multiband imaging to measure the warm dust emission in a sample of 31 multiply imaged quasars, to be used as a probe of the particle nature of dark matter. We present measurements of the relative magnifications of the strongly lensed warm dust emission in a sample of nine systems. The warm dust region is compact and sensitive to perturbations by populations of haloes down to masses $$\sim 10^6$$ M$$_{\odot }$$. Using these warm dust flux-ratio measurements in combination with five previous narrow-line flux-ratio measurements, we constrain the halo mass function. In our model, we allow for complex deflector macromodels with flexible third- and fourth-order multipole deviations from ellipticity, and we introduce an improved model of the tidal evolution of subhaloes. We constrain a WDM model and find an upper limit on the half-mode mass of $$10^{7.6}\, {\rm M}_\odot$$ at posterior odds of 10:1. This corresponds to a lower limit on a thermally produced dark matter particle mass of 6.1 keV. This is the strongest gravitational lensing constraint to date, and comparable to those from independent probes such as the Ly $$\alpha$$ forest and Milky Way satellite galaxies.more » « less
An official website of the United States government

