skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 4, 2025

Title: Phase transformation of ferric-iron-rich silicate in Earth’s mid-mantle
Abstract Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction.  more » « less
Award ID(s):
2310830 1751664
PAR ID:
10526903
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Mineralogical Society of America
Date Published:
Journal Name:
American Mineralogist
ISSN:
0003-004X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle. 
    more » « less
  2. Both seismic observations of dense low shear velocity regions and models of magma ocean crystallization and mantle dynamics support enrichment of iron in Earth’s lowermost mantle. Physical properties of iron-rich lower mantle heterogeneities in the modern Earth depend on distribution of iron between coexisting lower mantle phases (Mg,Fe)O magnesiowüstite, (Mg,Fe)SiO3 bridgmanite, and (Mg,Fe)SiO3 post-perovskite. The partitioning of iron between these phases was investigated in synthetic ferrous-iron-rich olivine compositions (Mg0.55Fe0.45)2SiO4 and (Mg0.28Fe0.72)2SiO4 at lower mantle conditions ranging from 33–128 GPa and 1900–3000 K in the laser-heated diamond anvil cell. The resulting phase assemblages were characterized by a combination of in situ X-ray diffraction and ex situ transmission electron microscopy. The exchange coefficient between bridgmanite and magnesiowüstite decreases with pressure and bulk Fe# and increases with temperature. Thermodynamic modeling determines that incorporation and partitioning of iron in bridgmanite are explained well by excess volume associated with Mg-Fe exchange. Partitioning results are used to model compositions and densities of mantle phase assemblages as a function of pressure, FeO-content and SiO2-content. Unlike average mantle compositions, iron-rich compositions in the mantle exhibit negative dependence of density on SiO2-content at all mantle depths, an important finding for interpretation of deep lower mantle structures. 
    more » « less
  3. null (Ed.)
    Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa below and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle. 
    more » « less
  4. Abstract Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3–10 mol% Fe2O3system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higherVP/VSratio than MgSiO3bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes. 
    more » « less
  5. Abstract Davemaoite (CaSiO3 perovskite) is considered the third most abundant phase in the pyrolytic lower mantle and the second most abundant phase in the subducted mid-ocean ridge basalt (MORB). During the partial melting of the pyrolytic upper mantle, incompatible titanium (Ti) becomes enriched in the basaltic magma, forming Ti-rich MORB. Davemaoite is considered an important Ti-bearing mineral in subducted slabs by forming a Ca(Si,Ti)O3 solid solution. However, the crystal structure and compressibility of Ca(Si,Ti)O3 perovskite solid solution at relevant pressure and temperature conditions had not been systematically investigated. In this study, we investigated the structure and equations of state of Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites at room temperature up to 82 and 64 GPa, respectively, by synchrotron X-ray diffraction (XRD). We found that both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites have a tetragonal structure up to the maximum pressures investigated. Based on the observed data and compared to pure CaSiO3 davemaoite, both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites are expected to be less dense up to the core-mantle boundary (CMB), and specifically ~1–2% less dense than CaSiO3 davemaoite in the pressure range of the transition zone (15–25 GPa). Our results suggest that the presence of Ti-bearing davemaoite phases may result in a reduction in the average density of the subducting slabs, which in turn promotes their stagnation in the lower mantle. The presence of low-density Ti-bearing davemaoite phases and subduction of MORB in the lower mantle may also explain the seismic heterogeneity in the lower mantle, such as large low shear velocity provinces (LLSVPs). 
    more » « less