Abstract In this paper, we study and prove the non-asymptotic superlinear convergence rate of the Broyden class of quasi-Newton algorithms which includes the Davidon–Fletcher–Powell (DFP) method and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. The asymptotic superlinear convergence rate of these quasi-Newton methods has been extensively studied in the literature, but their explicit finite–time local convergence rate is not fully investigated. In this paper, we provide a finite–time (non-asymptotic) convergence analysis for Broyden quasi-Newton algorithms under the assumptions that the objective function is strongly convex, its gradient is Lipschitz continuous, and its Hessian is Lipschitz continuous at the optimal solution. We show that in a local neighborhood of the optimal solution, the iterates generated by both DFP and BFGS converge to the optimal solution at a superlinear rate of$$(1/k)^{k/2}$$ , wherekis the number of iterations. We also prove a similar local superlinear convergence result holds for the case that the objective function is self-concordant. Numerical experiments on several datasets confirm our explicit convergence rate bounds. Our theoretical guarantee is one of the first results that provide a non-asymptotic superlinear convergence rate for quasi-Newton methods.
more »
« less
Online Learning Guided Curvature Approximation: A Quasi-Newton Method with Global Non-Asymptotic Superlinear Convergence
Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method.
more »
« less
- Award ID(s):
- 2007668
- PAR ID:
- 10526923
- Publisher / Repository:
- PMLR
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Non-asymptotic analysis of quasi-Newton methods have gained traction recently. In particular, several works have established a non-asymptotic superlinear rate of O((1/sqrt{t})^t) for the (classic) BFGS method by exploiting the fact that its error of Newton direction approximation approaches zero. Moreover, a greedy variant of BFGS was recently proposed which accelerates its convergence by directly approximating the Hessian, instead of the Newton direction, and achieves a fast local quadratic convergence rate. Alas, the local quadratic convergence of Greedy-BFGS requires way more updates compared to the number of iterations that BFGS requires for a local superlinear rate. This is due to the fact that in Greedy-BFGS the Hessian is directly approximated and the Newton direction approximation may not be as accurate as the one for BFGS. In this paper, we close this gap and present a novel BFGS method that has the best of both worlds in that it leverages the approximation ideas of both BFGS and GreedyBFGS to properly approximate the Newton direction and the Hessian matrix simultaneously. Our theoretical results show that our method outperforms both BFGS and Greedy-BFGS in terms of convergence rate, while it reaches its quadratic convergence rate with fewer steps compared to Greedy-BFGS. Numerical experiments on various datasets also confirm our theoretical findings.more » « less
-
In this paper, we study the application of quasi-Newton methods for solving empirical risk minimization (ERM) problems defined over a large dataset. Traditional deterministic and stochastic quasi-Newton methods can be executed to solve such problems; however, it is known that their global convergence rate may not be better than first-order methods, and their local superlinear convergence only appears towards the end of the learning process. In this paper, we use an adaptive sample size scheme that exploits the superlinear convergence of quasi-Newton methods globally and throughout the entire learning process. The main idea of the proposed adaptive sample size algorithms is to start with a small subset of data points and solve their corresponding ERM problem within its statistical accuracy, and then enlarge the sample size geometrically and use the optimal solution of the problem corresponding to the smaller set as an initial point for solving the subsequent ERM problem with more samples. We show that if the initial sample size is sufficiently large and we use quasi-Newton methods to solve each subproblem, the subproblems can be solved superlinearly fast (after at most three iterations), as we guarantee that the iterates always stay within a neighborhood that quasi-Newton methods converge superlinearly. Numerical experiments on various datasets confirm our theoretical results and demonstrate the computational advantages of our method.more » « less
-
Stochastic second-order methods are known to achieve fast local convergence in strongly convex optimization by relying on noisy Hessian estimates to precondition the gradient. Yet, most of these methods achieve superlinear convergence only when the stochastic Hessian noise diminishes, requiring an increase in the per-iteration cost as time progresses. Recent work in \cite{na2022hessian} addressed this issue via a Hessian averaging scheme that achieves a superlinear convergence rate without increasing the per-iteration cost. However, the considered method exhibits a slow global convergence rate, requiring up to ~O(κ^2) iterations to reach the superlinear rate of ~O((1/t)^{t/2}), where κ is the problem's condition number. In this paper, we propose a novel stochastic Newton proximal extragradient method that significantly improves these bounds, achieving a faster global linear rate and reaching the same fast superlinear rate in ~O(κ) iterations. We achieve this by developing a novel extension of the Hybrid Proximal Extragradient (HPE) framework, which simultaneously achieves fast global and local convergence rates for strongly convex functions with access to a noisy Hessian oracle.more » « less
-
In this paper, we present an accelerated quasi-Newton proximal extragradient method for solving unconstrained smooth convex optimization problems. With access only to the gradients of the objective function, we prove that our method can achieve a convergence rate of $${\bigO}\bigl(\min\{\frac{1}{k^2}, \frac{\sqrt{d\log k}}{k^{2.5}}\}\bigr)$$, where $$d$$ is the problem dimension and $$k$$ is the number of iterations. In particular, in the regime where $$k = \bigO(d)$$, our method matches the \emph{optimal rate} of $$\mathcal{O}(\frac{1}{k^2})$$ by Nesterov's accelerated gradient (NAG). Moreover, in the the regime where $$k = \Omega(d \log d)$$, it outperforms NAG and converges at a \emph{faster rate} of $$\mathcal{O}\bigl(\frac{\sqrt{d\log k}}{k^{2.5}}\bigr)$$. To the best of our knowledge, this result is the first to demonstrate a provable gain for a quasi-Newton-type method over NAG in the convex setting. To achieve such results, we build our method on a recent variant of the Monteiro-Svaiter acceleration framework and adopt an online learning perspective to update the Hessian approximation matrices, in which we relate the convergence rate of our method to the dynamic regret of a specific online convex optimization problem in the space of matrices.more » « less