skip to main content


This content will become publicly available on February 1, 2025

Title: Authentication and PHY-Security Schemes for Electric Vehicle Dynamic Wireless Charging
This article proposes authentication and physical layer security schemes to improve secure communications between the electric vehicle (EV) and charging infrastructure in dynamic wireless power transfer (DWPT) systems. In particular, a double-encryption with the signature (DoES) scheme is proposed for session key exchange between EV and charging station which provides data authenticity and integrity. To enable low-latency authentication between EV and power transmitter (PT) in DWPT systems, a sign-encrypt-message (SEM) authentication code scheme is designed leveraging symmetric keys for dynamic charging, which ensures privacy and resistance to tampering attacks. The artificial noise-based physical layer security (AN-based PLS) scheme is also proposed at the physical layer to degrade the wiretapped signal quality of multiple eavesdroppers operating in non-colluding and colluding cases. Closed-form expressions for the secrecy outage probability (SOP) and intercept probability (IP) of the considered system with the non-colluding case are derived to show that the proposed AN-based PLS scheme provides lower SOP and IP than the conventional ones without AN. The distance between eavesdroppers and the PT also affects the system SOP and IP in both non-colluding and colluding cases. Moreover, the EV using the DoES scheme takes 52 ms for obtaining session keys from the charging station while it only spends 8.23 ms with the SEM scheme to authenticate with PT for the charging process.  more » « less
Award ID(s):
2239169
NSF-PAR ID:
10527016
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE Transactions on Vehicular Technology
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
Volume:
73
Issue:
2
ISSN:
0018-9545
Page Range / eLocation ID:
1698 to 1712
Subject(s) / Keyword(s):
Authentication Vehicle dynamics Security Protocols Transmitters Wireless communication Cryptography Authentication dynamic charging electric vehicles privacy secure wireless networks wireless power transfer
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider the physical layer security of an RIS-assisted multiple-antenna communication system with randomly located eavesdroppers. The exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and a closed-form expression for the secrecy outage probability (SOP) is obtained. It is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, and the impact of the transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. We also perform an analytical study demonstrating that the secrecy diversity order depends on the path loss exponent of the RIS-to-ground links. Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations. 
    more » « less
  2. null (Ed.)
    We conducted a survey of 67 graduate students enrolled in the Privacy and Security in Healthcare course at Indiana University Purdue University Indianapolis. This was done to measure user preference and their understanding of usability and security of three different Electronic Health Records authentication methods: single authentication method (username and password), Single sign-on with Central Authentication Service (CAS) authentication method, and a bio-capsule facial authentication method. This research aims to explore the relationship between security and usability, and measure the effect of perceived security on usability in these three aforementioned authentication methods. We developed a formative-formative Partial Least Square Structural Equation Modeling (PLS-SEM) model to measure the relationship between the latent variables of Usability, and Security. The measurement model was developed using five observed variables (measures). - Efficiency and Effectiveness, Satisfaction, Preference, Concerns, and Confidence. The results obtained highlight the importance and impact of these measures on the latent variables and the relationship among the latent variables. From the PLS-SEM analysis, it was found that security has a positive impact on usability for Single sign-on and bio-capsule facial authentication methods. We conclude that the facial authentication method was the most secure and usable among the three authentication methods. Further, descriptive analysis was done to draw out the interesting findings from the survey regarding the observed variables. 
    more » « less
  3. null (Ed.)
    Electronic money (e-money or e-Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e-money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF-Cash. PUF-Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy-preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware-based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF-Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large-scale applications. An in-depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model-building, impersonation, and side-channel variants. 
    more » « less
  4. Electronic money (e‐money or e‐Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e‐money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF‐Cash. PUF‐Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy‐preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware‐based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF‐Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large‐scale applications. An in‐depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model‐building, impersonation, and side‐ channel variants. 
    more » « less
  5. Orthogonal blinding based schemes for wireless physical layer security aim to achieve secure communication by injecting noise into channels orthogonal to the main channel and corrupting the eavesdropper’s signal reception. These methods, albeit practical, have been proven vulnerable against multiantenna eavesdroppers who can filter the message from the noise. The venerability is rooted in the fact that the main channel state remains stasis in spite of the noise injection, which allows an eavesdropper to estimate it promptly via known symbols and filter out the noise. Our proposed scheme leverages a reconfigurable antenna for Alice to rapidly change the channel state during transmission and a compressive sensing based algorithm for her to predict and cancel the changing effects for Bob. As a result, the communication between Alice and Bob remains clear, whereas randomized channel state prevents Eve from launching the knownplaintext attack. We formally analyze the security of the scheme against both single and multi-antenna eavesdroppers and identify its unique anti-eavesdropping properties due to the artificially created fast changing channel. We conduct extensive simulations and real-world experiments to evaluate its performance. Empirical results show that our scheme can suppress Eve’s attack success rate to the level of random guessing, even if she knows all the symbols transmitted through other antenna modes. 
    more » « less