skip to main content


Title: Links between Innate and Adaptive Immunity Can Favor Evolutionary Persistence of Immunopathology
Synopsis

Immunopathology, or the harm caused to an organism’s own tissues during the activation of its immune system, carries substantial costs. Moreover, avoiding this self-harm may be an important mechanism underlying tolerance of infection, helping to reducing fitness costs without necessarily clearing parasites. Despite the apparent benefits of minimizing immunopathology, such damage persists across a range of host species. Prior work has explored a trade-off with resistance during a single infection as a potential driver of this persistence, with some collateral damage being unavoidable when killing parasites. Here, we present an additional trade-off that could favor the continued presence of immunopathology: robust immune responses during initial infection (e.g., innate immunity in vertebrates) can induce stronger memory (adaptive immunity), offering protection from future infections. We explore this possibility in an adaptive dynamics framework, using theoretical models parameterized from an ecologically relevant host-parasite system, house finches (Haemorhous mexicanus) infected with the bacterial pathogen, Mycoplasma gallisepticum. We find that some degree of immunopathology is often favored when immunopathology during first infection either reduces susceptibility to or enhances recovery from second infection. Further, interactions among factors like transmission rate, recovery rate, background mortality, and pathogen virulence also shape these evolutionary dynamics. Most notably, the evolutionary stability of investment in immunopathology is highly dependent upon the mechanism by which hosts achieve secondary protection (susceptibility vs. recovery), with the potential for abrupt evolutionary shifts between high and low investment under certain conditions. These results highlight the potential for immune memory to play an important role in the evolutionary persistence of immunopathology and the need for future empirical research to reveal the links between immunopathology during initial infections and longer-term immune protection.

 
more » « less
Award ID(s):
1911925
PAR ID:
10527199
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infectionMycoplasma gallisepticum(MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3’-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs.

     
    more » « less
  2. Abstract

    The evolution of host immunity occurs in the context of the microbiome, but little theory exists to predict how resistance against pathogens might be influenced by the need to tolerate and regulate commensal microbiota. We present a general model to explore the optimal investment in host immunity under conditions in which the host can, versus cannot easily distinguish among commensal versus pathogenic bacteria, and when commensal microbiota can, versus cannot protect the host against the impacts of pathogen infection. We find that a loss of immune vigilance associated with innate immunity over evolutionary time can occur due to the challenge of discriminating between pathogenic and other microbe species. Further, we find the greater the protective effect of microbiome species, acting either directly or via competition with a pathogen, or the higher the costs of immunity, the more likely the loss of immune vigilance is. Conversely, this effect can be reversed when pathogens increase host mortality. Generally, the magnitude of costs of immunity required to allow evolution of decreased immune vigilance are predicted to be lowest when microbiome and pathogen species most resemble each other (in terms of host recognition), and when immune effects on the pathogen are weak. Our model framework makes explicit the core trade-offs likely to shape the evolution of immunity in the context of microbiome/pathogen discrimination. We discuss how this informs interpretation of patterns and process in natural systems, including vulnerability to pathogen emergence.

     
    more » « less
  3. Abstract Immune system evolution is shaped by the fitness costs and trade-offs associated with mounting an immune response. Costs that arise mainly as a function of the magnitude of investment, including energetic and immunopathological costs, are well-represented in studies of immune system evolution. Less well considered, however, are the costs of immune cell plasticity and specialization. Hosts in nature encounter a large diversity of microbes and parasites that require different and sometimes conflicting immune mechanisms for defense, but it takes precious time to recognize and correctly integrate signals for an effective polarized response. In this perspective, we propose that bet-hedging can be a viable alternative to plasticity in immune cell effector function, discuss conditions under which bet-hedging is likely to be an advantageous strategy for different arms of the immune system, and present cases from both innate and adaptive immune systems that suggest bet-hedging at play. 
    more » « less
  4. Abstract Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features. Here, we highlight the current understanding of phytocytokine production, perception and functions in plant immunity, and discuss how plants and pathogens manipulate phytocytokine signaling for their own benefits during the plant-pathogen warfare. 
    more » « less
  5. Abstract Incorporation of exotic plants into the diets of native herbivores is a common phenomenon, influencing interactions with natural enemies and providing insight into the tritrophic costs and benefits of dietary expansion. We evaluated how use of an exotic plant, Plantago lanceolata , impacted immune performance, development and susceptibility to pathogen infection in the neotropical herbivore Anartia jatrophae (Lepidoptera: Nymphalidae). Caterpillars were reared on P. lanceolata or a native plant, Bacopa monnieri , and experimentally infected with a pathogenic virus, Junonia coenia densovirus. We found that virus‐challenged herbivores exhibited higher survival rates and lower viral burdens when reared on P. lanceolata compared to B. monnieri , though immune performance and development time were largely similar on the two plants. These findings reveal that use of an exotic plant can impact the vulnerability of a native herbivore to pathogen infection, suggesting diet‐mediated protection against disease as a potential mechanism facilitating the incorporation of novel resources. 
    more » « less