The combination of triazole/gold (TA‐Au) and Cu(OTf)2is identified as the optimal catalytic system for promoting intramolecular hydroboration for the synthesis of a six‐membered cyclic amine–borane. Excellent yields (up to 95 %) and regioselectivities (5‐exo vs. 6‐endo) were achieved through catalyst control and sequential dilution. Good functional‐group tolerance was attained, thus allowing the preparation of highly functionalized cyclic amine–borane substrates, which could not be achieved using other methods. Deuterium‐labeling studies support the involvement of a hydride addition to a gold‐activated alkyne with subsequent C−B bond formation.
This content will become publicly available on July 5, 2025
We present a series of borane‐tethered cyclic (alkyl)(amino)carbene (cAAC)‐copper complexes, including a borane‐capped Cu(I) hydride. This hydride is unusually hydridic and reacts rapidly with both CO2 and 2,6‐dimethylphenol at room temperature. Its reactivity is distinct from variants without a tethered borane, and the underlying principles governing the enhanced hydricity were evaluated experimentally and theoretically. These stoichiometric results were extended to catalytic CO2 hydrogenation, and the borane‐tethered (intramolecular) system exhibits ~3‐fold enhancement relative to an intermolecular system.
more » « less- Award ID(s):
- 2154678
- PAR ID:
- 10527236
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Carbon–hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.more » « less
-
Abstract Density functional theory has been used to elucidate the mechanistic underpinnings of the regeneration of ammonia‐borane (H3B−NH3,
AB ) from polyborazylene (BxNxHx,PBz ) in the presence of hydrazine (H2N−NH2,Hz ). Herein, borazine (B3N3H6,Bz ) is used as the simplest relevant model ofPBz for the regeneration process. Digestion ofBz usingHz was found to occur by a string of Lewis acid base adduct (between B atoms ofBz andHz molecule) formation andHz assisted proton transfer processes. Later, B−H bonds of HB(NHNH2)2, theBz digested product, are redistributed to form hydrazine‐borane (H3B−NH2NH2,HzB ) and B(NHNH2)3. Redistribution of B−H bonds occurs through hydroboration and concerted proton‐hydride transfer. Another B−H redistributed product, B(NHNH2)3, producesHzB as a result of proton and hydride transfer from cis‐diazene (Dz ), the oxidized product ofHz in presence of O2. -
In this work, we introduce a novel concept of a borane group vicinal to a metal boryl bond acting as a supporting hemilabile ligand in exohedrally metalated three-dimensional carborane clusters. The (POBOP)Ru(Cl)(PPh 3 ) pincer complex (POBOP = 1,7-OP( i -Pr) 2 - m -2-carboranyl) features extreme distortion of the two-center-two-electron Ru–B bond due to the presence of a strong three-center-two-electron B–H⋯Ru vicinal interaction. Replacement of the chloride ligand with a hydride afforded the (POBOP)Ru(H)(PPh 3 ) pincer complex, which possesses B–Ru, B–H⋯Ru, and Ru–H bonds. This complex was found to exhibit a rapid exchange between hydrogen atoms of the borane and the terminal hydride through metal center shuttling between two boron atoms of the carborane cage. This exchange process, which involves sequential cleavage and formation of strong covalent metal–boron and metal–hydrogen bonds, is unexpectedly facile at temperatures above −50 °C corresponding to an activation barrier of 12.2 kcal mol −1 . Theoretical calculations suggested two equally probable pathways for the exchange process through formally Ru(0) or Ru( iv ) intermediates, respectively. The presence of this hemilabile vicinal B–H⋯Ru interaction in (POBOP)Ru(H)(PPh 3 ) was found to stabilize a latent coordination site at the metal center promoting efficient catalytic transfer dehydrogenation of cyclooctane under nitrogen and air at 170 °C.more » « less
-
We report a family of cobalt complexes based on bidentate phosphine ligands with two, one, or zero pendent amine groups in the ligand backbone. The pendent amine complexes are active electrocatalysts for the formate oxidation reaction, generating CO2 with near-quantitative faradaic efficiency at moderate overpotentials (0.45 – 0.57 V in acetonitrile). These homogeneous electrocatalysts are the first cobalt example and second first-row transition metal example for formate oxidation. Thermodynamic measurements reveal these complexes are energetically primed for formate oxidation via hydride transfer to the cobalt center, followed by deprotonation of the resulting cobalt-hydride by formate acting as a base. The complex with the strongest cobalt- hydride bond, given by its thermodynamic hydricity, is the fastest electrocatalyst in this series, with an observed rate constant for formate oxidation of 135 ± 8 h−1 at 25 °C. Electrocatalytic turnover is not observed for the complex with no pendent amine groups: decomposition of the complex structure is evident in the presence of high formate concentrations.