Abstract Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size‐ and charge‐based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size‐based separation coisolated protein contaminants, whereas size‐based TFF with charged‐based HPAEC dramatically improved purity of BEVs produced by probiotic Gram‐negativeEscherichia coliand Gram‐positive lactic acid bacteria (LAB).Escherichia coliBEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti‐inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large‐scale biomanufacturing of therapeutic BEV products.
more »
« less
Efficient production of fluorophore‐labeled CC chemokines for biophysical studies using recombinant enterokinase and recombinant sortase
Abstract Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti‐inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti‐chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion‐tagged chemokine is produced inEscherichia coli, then efficient cleavage of the N‐terminal fusion partner is carried out with lab‐produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab‐produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP‐fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti‐inflammatory therapeutic, showing a binding constant for vCCI:vMIP‐fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP‐fluor) can be used in competition assays with other chemokines and we report aKdfor vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.
more »
« less
- Award ID(s):
- 2112675
- PAR ID:
- 10527305
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Biopolymers
- Volume:
- 115
- Issue:
- 2
- ISSN:
- 0006-3525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Activation of the CB2 receptor has been shown to have anti-inflammatory and antinociceptive effects without causing psychoactive effects. Previously, we reported that the compound ethyl 2(2-(N-(2,3-dimethylphenyl) phenylsulfonamido)acetamido)benzoate (ABK5) is a CB2 subtype selective agonist with anti-inflammatory and antinociceptive effects. In the present study, we tested four ABK5 derivatives, ABK5-1, ABK5-2, ABK5-5, and ABK5-6, to analyze the structure of ABK5 to obtain CB2-selective agonists with higher affinity and efficacy. Affinity, subtype selectivity, and G-protein coupling were determined by radioligand binding assays. Selected compounds were then subjected to evaluation of anti-inflammatory effects using two different cell lines, Jurkat (ABK5-1 and 5-2) and BV-2 cells (ABK5-1), which are models of T cells and microglia, respectively. ABK5-1, ABK5-2, and ABK5-6 had comparable CB2 binding affinity with ABK5 (and stimulated G-protein coupling), while only ABK5-1 and ABK5-2 maintained CB2-subtype selectivity. ABK5-5 did not bind CB2 in the detectable range. RT-PCR and ELISA analysis showed that the two compounds also inhibit IL-2 and TNF-α production, and they were more efficacious than ABK5 in inhibiting TNF-α production. CXCL-12 mediated chemotaxis was also evaluated by the transwell migration assay, and both ABK5-1 and ABK5-2 inhibited chemotaxis with a stronger effect observed in ABK5-1. In the microglia cell line BV-2, ABK5-1 inhibited IL-1β and IL-6 production, which suggests this compound has anti-inflammatory effects through targeting multiple immune cells, and may be a candidate for treatment of inflammation.more » « less
-
null (Ed.)Background: Although most biologics are produced using recombinant technologies, heparin persists as a product purified from animal tissues. A cell based system for production of heparin would eliminate risk of supply shortage and contamination. Additionally, genetic engineering could yield heparin with improved qualities such as reduced risk of heparin-induced thrombocytopenia. Aims: This work is focused on engineering mammalian cell lines and bioprocess methods to produce recombinant heparin. Methods: The heparan sulfate biosynthetic pathway of mastocytoma cells was genetically engineered to alter the expression of heparan sulfate sulfotransferases. The resulting cell lines were screened for production of anti-FXa activity. Heparan sulfate production from a candidate cell line was tested in chemically defined medium. The recombinant product was characterized structurally and in clotting, anti-protease and heparin induced thrombocytopenia assays. Results: Engineered cells produced heparan sulfate in chemically defined medium with anti-Xa and anti-IIa activity exceeding the requirement for unfractionated heparin despite having lower sulfate content. Chain length was longer than unfractionated heparin. Additionally, binding to platelet factor 4 was reduced compared to unfractionated heparin, suggesting less risk of heparin-induced thrombocytopenia. Conclusion: These results demonstrate the feasibility of producing a substitute for unfractionated heparin from recombinant cell culture. Additionally, recombinant technology may allow production of heparin substitutes with improved properties such as reduced side effects.more » « less
-
Physicians are challenged in treating pain patients due to the lack of quantifiable, objective methods of measuring pain in the clinic; pain sensation is multifaceted and subjective to each individual. There is a critical need for point-of-care quantification of accessible biomarkers to provide objective analyses beyond the subjective pain scales currently employed in clinical care settings. In the present study, we employed an animal model to test the hypothesis that circulating regulators of the inflammatory response directly associate with an objective behavioral response to inflammatory pain. Upon induction of localized paw inflammation, we measured the systemic protein expression of cytokines, and activity levels of matrix metalloproteinases (MMPs) that are known to participate in the inflammatory response at the site of injury and investigated their relationship to the behavioral response across a 24 h period. Intraplantar injection with 1% λ-carrageenan induced a significant increase in paw thickness across this timespan with maximal effects observed at the 8 h timepoint when locomotor activity was also impaired. Expression of the chemokines C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand 2 (CCL2) positively correlated with paw inflammation and negatively correlated with locomotor activity at 8 h. The ratio of MMP9 to MMP2 activity negatively correlated with paw inflammation at the 8 h timepoint. We postulate that the CXCL1 and CCL2 as well as the ratio of MMP9 to MMP2 activity may serve as predictive biomarkers for the timecourse of inflammation-associated locomotor impairment. These data define opportunities for the future development of a point-of-care device to objectively quantify biomarkers for inflammatory pain states.more » « less
-
Abstract The transport of Ca2+across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2pools. Ca2+is also released during vacuole fusion upontrans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2on Ca2+flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2were required for Ca2+uptake into the vacuole, increased concentrations abolished Ca2+efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2or increased endogenous production of by the hyperactivefab1T2250Amutant. In contrast, the lack of PI(3,5)P2on vacuoles from the kinase deadfab1EEEmutant showed delayed and decreased Ca2+uptake. The effects of PI(3,5)P2were linked to the Ca2+pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+uptake when added at the start of the assay, while adding it after Ca2+had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+exchanger Vcx1 lacked the ability to take up Ca2+and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2can modulate which path predominates.more » « less
An official website of the United States government

