skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interhelical E@ g ‐N@ a interactions modulate coiled coil stability within a de novo set of orthogonal peptide heterodimers
The designability of orthogonal coiled coil (CC) dimers, which draw on well‐established design rules, plays a pivotal role in fueling the development of CCs as synthetically versatile assembly‐directing motifs for the fabrication of bionanomaterials. Here, we aim to expand the synthetic CC toolkit through establishing a “minimalistic” set of orthogonal, de novo CC peptides that comprise 3.5 heptads in length and a single buried Asn to prescribe dimer formation. The designed sequences display excellent partner fidelity, confirmed via circular dichroism (CD) spectroscopy and Ni‐NTA binding assays, and are corroborated in silico using molecular dynamics (MD) simulation. Detailed analysis of the MD conformational data highlights the importance of interhelical E@g‐N@ainteractions in coordinating an extensive 6‐residue hydrogen bonding network that “locks” the interchain Asn‐Asn′ contact in place. The enhanced stability imparted to the Asn‐Asn′ bond elicits an increase in thermal stability of CCs up to ~15°C and accounts for significant differences in stability within the collection of similarly designed orthogonal CC pairs. The presented work underlines the utility of MD simulation as a tool for constructing de novo, orthogonal CCs, and presents an alternative handle for modulating the stability of orthogonal CCs via tuning the number of interhelical E@g‐N@acontacts. Expansion of CC design rules is a key ingredient for guiding the design and assembly of more complex, intricate CC‐based architectures for tackling a variety of challenges within the fields of nanomedicine and bionanotechnology.  more » « less
Award ID(s):
2112675
PAR ID:
10527309
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Peptide Science
Volume:
30
Issue:
2
ISSN:
1075-2617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of completely synthetic proteins from first principles— de novo protein design—is challenging. This is because, despite recent advances in computational protein–structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein–protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg — i.e. , the sequence signature of many helical bundles—the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli . All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design. 
    more » « less
  2. Abstract De novo metalloprotein design involves the construction of proteins guided by specific repeat patterns of polar and apolar residues, which, upon self‐assembly, provide a suitable environment to bind metals and produce artificial metalloenzymes. While a wide range of functionalities have been realized in de novo designed metalloproteins, the functional repertoire of such constructs towards alternative energy‐relevant catalysis is currently limited. Here we show the application of de novo approach to design a functional H2evolving protein. The design involved the assembly of an amphiphilic peptide featuring cysteines at tandema/dsites of each helix. Intriguingly, upon NiIIaddition, the oligomers shift from a major trimeric assembly to a mix of dimers and trimers. The metalloprotein produced H2photocatalytically with a bell‐shape pH dependence, having a maximum activity at pH 5.5. Transient absorption spectroscopy is used to determine the timescales of electron transfer as a function of pH. Selective outer sphere mutations are made to probe how the local environment tunes activity. A preferential enhancement of activity is observed via steric modulation above the NiIIsite, towards the N‐termini, compared to below the NiIIsite towards the C‐termini. 
    more » « less
  3. Abstract Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes. 
    more » « less
  4. Although DNAN6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA inTetrahymena thermophila. In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2′-deoxyuridine (BrdU). In ΔAMT1cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1cells is slow and sporadic. InTetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark. 
    more » « less
  5. Jewel wasps in the genus of Nasonia are parasitoids with haplodiploidy sex determination, rapid development and are easy to culture in the laboratory. They are excellent models for insect genetics, genomics, epigenetics, development, and evolution. Nasonia vitripennis ( Nv ) and N. giraulti ( Ng ) are closely-related species that can be intercrossed, particularly after removal of the intracellular bacterium Wolbachia , which serve as a powerful tool to map and positionally clone morphological, behavioral, expression and methylation phenotypes. The Nv reference genome was assembled using Sanger, PacBio and Nanopore approaches and annotated with extensive RNA-seq data. In contrast, Ng genome is only available through low coverage resequencing. Therefore, de novo Ng assembly is in urgent need to advance this system. In this study, we report a high-quality Ng assembly using 10X Genomics linked-reads with 670X sequencing depth. The current assembly has a genome size of 259,040,977 bp in 3,160 scaffolds with 38.05% G-C and a 98.6% BUSCO completeness score. 97% of the RNA reads are perfectly aligned to the genome, indicating high quality in contiguity and completeness. A total of 14,777 genes are annotated in the Ng genome, and 72% of the annotated genes have a one-to-one ortholog in the Nv genome. We reported 5 million Ng-Nv SNPs which will facility mapping and population genomic studies in Nasonia . In addition, 42 Ng -specific genes were identified by comparing with Nv genome and annotation. This is the first de novo assembly for this important species in the Nasonia model system, providing a useful new genomic toolkit. 
    more » « less