skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Biofeedback on Muscle Effort Reduction when Holding Positions with a Powered Upper Limb Exoskeleton
Exoskeletons have the potential to support daily activities by assisting the movement performance. Previous studies have shown that powered elbow exoskeletons can reduce muscle effort during continuous cyclic movement. However, natural movements have embedded stationary hold periods as well as transitions between postures. The human performance when using exoskeletons for more natural movements should be evaluated. In this study, we implemented visual and haptic electromyography (EMG) biofeedback to help people use an upper limb exoskeleton to perform a target position matching task. Participants (n=36) did not significantly reduce their muscle effort during hold periods when provided with biofeedback. Participants had difficulty relaxing their muscles at more flexed postures during hold periods, suggesting that they continued to provide effort instead of taking advantage of the device. To fully benefit from robotic exoskeletons, additional training and more advanced controllers might be needed.  more » « less
Award ID(s):
2110133
PAR ID:
10527426
Author(s) / Creator(s):
;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Page Range / eLocation ID:
790 to 794
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hand gestures are a natural and intuitive form of communication, and integrating this communication method into robotic systems presents significant potential to improve human-robot collaboration. Recent advances in motor neuroscience have focused on replicating human hand movements from synergies also known as movement primitives. Synergies, fundamental building blocks of movement, serve as a potential strategy adapted by the central nervous system to generate and control movements. Identifying how synergies contribute to movement can help in dexterous control of robotics, exoskeletons, prosthetics and extend its applications to rehabilitation. In this paper, 33 static hand gestures were recorded through a single RGB camera and identified in real-time through the MediaPipe framework as participants made various postures with their dominant hand. Assuming an open palm as initial posture, uniform joint angular velocities were obtained from all these gestures. By applying a dimensionality reduction method, kinematic synergies were obtained from these joint angular velocities. Kinematic synergies that explain 98% of variance of movements were utilized to reconstruct new hand gestures using convex optimization. Reconstructed hand gestures and selected kinematic synergies were translated onto a humanoid robot, Mitra, in real-time, as the participants demonstrated various hand gestures. The results showed that by using only few kinematic synergies it is possible to generate various hand gestures, with 95.7% accuracy. Furthermore, utilizing low-dimensional synergies in control of high dimensional end effectors holds promise to enable near-natural human-robot collaboration. 
    more » « less
  2. Abstract This paper introduces a novel cable-driven robotic platform that enables six degrees-of-freedom (DoF) natural head–neck movements. Poor postural control of the head–neck can be a debilitating symptom of neurological disorders such as amyotrophic lateral sclerosis and cerebral palsy. Current treatments using static neck collars are inadequate, and there is a need to develop new devices to empower movements and facilitate physical rehabilitation of the head–neck. State-of-the-art neck exoskeletons using lower DoF mechanisms with rigid linkages are limited by their hard motion constraints imposed on head–neck movements. By contrast, the cable-driven robot presented in this paper does not constrain motion and enables wide-range, 6-DoF control of the head–neck. We present the mechatronic design, validation, and control implementations of this robot, as well as a human experiment to demonstrate a potential use case of this versatile robot for rehabilitation. Participants were engaged in a target reaching task while the robot applied both assistive and resistive moments on the head during the task. Our results show that neck muscle activation increased by 19% when moving the head against resistance and decreased by 28–43% when assisted by the robot. Overall, these results provide a scientific justification for further research in enabling movement and identifying personalized rehabilitation for motor training. Beyond rehabilitation, other applications such as applying force perturbations on the head to study sensory integration and applying traction to achieve pain relief may benefit from the innovation of this robotic platform which is capable of applying controlled 6-DoF forces/moments on the head. 
    more » « less
  3. The hypothesis that the central nervous system (CNS) makes use of synergies or movement primitives in achieving simple to complex movements has inspired the investigation of different types of synergies. Kinematic and muscle synergies have been extensively studied in the literature, but only a few studies have compared and combined both types of synergies during the control and coordination of the human hand. In this paper, synergies were extracted first independently (called kinematic and muscle synergies) and then combined through data fusion (called musculoskeletal synergies) from 26 activities of daily living in 22 individuals using principal component analysis (PCA) and independent component analysis (ICA). By a weighted linear combination of musculoskeletal synergies, the recorded kinematics and the recorded muscle activities were reconstructed. The performances of musculoskeletal synergies in reconstructing the movements were compared to the synergies reported previously in the literature by us and others. The results indicate that the musculoskeletal synergies performed better than the synergies extracted without fusion. We attribute this improvement in performance to the musculoskeletal synergies that were generated on the basis of the cross-information between muscle and kinematic activities. Moreover, the synergies extracted using ICA performed better than the synergies extracted using PCA. These musculoskeletal synergies can possibly improve the capabilities of the current methodologies used to control high dimensional prosthetics and exoskeletons. 
    more » « less
  4. Abstract Aircraft collisions with birds span the entire history of human aviation, including fatal collisions during some of the first powered human flights. Much effort has been expended to reduce such collisions, but increased knowledge about bird movements and species occurrence could dramatically improve decision support and proactive measures to reduce them. Migratory movements of birds pose a unique, often overlooked, threat to aviation that is particularly difficult for individual airports to monitor and predict the occurrence of birds vary extensively in space and time at the local scales of airport responses.We use two publicly available datasets, radar data from the US NEXRAD network characterizing migration movements and eBird data collected by citizen scientists to map bird movements and species composition with low human effort expenditures but high temporal and spatial resolution relative to other large‐scale bird survey methods. As a test case, we compare results from weather radar distributions and eBird species composition with detailed bird strike records from three major New York airports.We show that weather radar‐based estimates of migration intensity can accurately predict the probability of bird strikes, with 80% of the variation in bird strikes across the year explained by the average amount of migratory movements captured on weather radar. We also show that eBird‐based estimates of species occurrence can, using species’ body mass and flocking propensity, accurately predict when most damaging strikes occur.Synthesis and applications. By better understanding when and where different bird species occur, airports across the world can predict seasonal periods of collision risks with greater temporal and spatial resolution; such predictions include potential to predict when the most severe and damaging strikes may occur. Our results highlight the power of federating datasets with bird movement and distribution data for developing better and more taxonomically and ecologically tuned models of likelihood of strikes occurring and severity of strikes. 
    more » « less
  5. null (Ed.)
    Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm’s performance was quantified by the root mean square error and coefficient of determination ( R 2 ) calculated from both the entire trial and during each perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the movements with R 2  > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and 0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for individuals with a spinal cord injury, and the procedure can be generalized for other gait studies. 
    more » « less