- Award ID(s):
- 2210615
- PAR ID:
- 10527487
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Edition / Version:
- 1.0
- Subject(s) / Keyword(s):
- Synoptic Arctic Survey SAS Pheophytin Arctic Ocean Chukchi Sea Beaufort Sea North Pole Pacific Arctic Chlorophyll Pigments
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Central Arctic Ocean remains profoundly understudied, particularly with respect to carbon cycling, ecosystem alteration, and associated changes in atmospheric, ice and ocean physics that drive those biological and biogeochemical systems. The region is expected to experience continued marked changes over the coming decades, driven by ongoing climate warming. Yet, because of relatively limited understanding of fundamental characteristics and processes in the region, predicting these changes and their Pan-Arctic linkages remains difficult. The Synoptic Arctic Survey (SAS) is organized around three major research areas: (1) physical drivers of importance to the ecosystem and carbon cycle; (2) the ecosystem response and (3) the carbon cycle. The overarching questions are: “What is the present state, and what are the major ongoing transformations of the Arctic marine system?” The overall objective of this expedition was to quantify the present states of the physical, biological, and biogeochemical systems of the Pacific Arctic (here defined as the Chukchi Sea, Beaufort shelf/slope, Chukchi Borderlands) and Canadian Basin (i.e., the Makarov and Canada basins) during summer 2022. A key goal is to document temporal changes where possible by comparison with historical data and to quantify linkages among adjacent shelves, slopes, and deep basins on a Pan-Arctic scale. These objectives are part of the International Synoptic Arctic Survey (SAS; 2021-2022) that seeks Pan-Arctic understanding of core ocean variables on a quasi-synoptic, spatially distributed basis using coordinated, international efforts. The findings of this expedition, a US contribution to the SAS, will be a foundation and legacy for future, quasi-decadal assessments of rapid and evolving Arctic Ocean system change." - Cruise Report USCGC Healy HLY2202/AWS2022 [Prepared by Carin Ashjian (cashjian@whoi.edu) and the HLY2202 Science Team] This data set contains measurements of water properties such as temperature, conductivity, chlorophyll fluorescence, Photosynthetically Available Radiation (PAR), oxygen, beam attenuation, and beam transmission. These measurements were collected by a Seabird 9 conductivity, temperature, and depth (CTD) and associated sensors on a CTD rosette lowered from the ship at discrete stations during cruise HLY2202.more » « less
-
There have been many changes over the past few decades in the physical environment and ecosystem health of the Arctic Ocean, which is a sentinel of global warming. Bioactive trace metal data of important micronutrients for algae across the global ocean, such as iron (Fe) and manganese (Mn), are key indicators of biogeochemical change. However, trace metal data in the Arctic have been historically sparse and generally confined to ice-free regions. In 2015, three major GEOTRACES expeditions sought to resolve trace metal distributions across the Arctic, covering the western, eastern, and Canadian Arctic sectors. The diverse Arctic shelves displayed unique controls on Fe and Mn cycling due to differing chemical, biological, and physical properties. Here, we contrast the shallow, reducing Chukchi Shelf in the western Arctic with the tidally forced, advective Canadian Arctic and the deeper, less productive Barents Shelf in the eastern Arctic. Reductive dissolution and physical resuspension both proved to be large sources of Fe and Mn to the Arctic and the North Atlantic outflow. In the isolated intermediate and deep waters, one-dimensional scavenging in the western and eastern Arctic contrasts with vertical biological signals in Baffin Bay and the Labrador Sea.
-
Marilyn J. Roossinck (Ed.)Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.more » « less
-
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.more » « less
-
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus–host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean—the physical, chemical, and biological landscape—influences the likelihood of both virus–host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.more » « less