skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geomorphological controls on estuary hydrodynamics with implications for diatom blooms in deglaciated coastal areas
Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2–4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.  more » « less
Award ID(s):
2045866
PAR ID:
10527556
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Science of The Total Environment
Volume:
948
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
174902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gobler, Christopher (Ed.)
    Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months. 
    more » « less
  2. Mulholland, Margaret R (Ed.)
    In 2016-17, shellfish harvesting closed for the first time in Narragansett Bay, Rhode Island, USA, from domoic acid (DA), a neurotoxin produced by diatoms of the Pseudo-nitzschia genus. Pseudo-nitzschia have occurred frequently for over 60 years in Narragansett Bay’s Long-Term Plankton Time Series (NBPTS), therefore it is surprising that the first closure only recently occurred. Pseudo-nitzschia species are known to vary in their toxin production, thus species identification is critical for understanding the underlying ecological causes of these harmful algal blooms (HABs). DNA in plankton biomass can be preserved for many years, so molecular barcoding of archived samples is useful for delineation of taxa over time. This study used amplification of the Pseudo-nitzschia -specific 18S-5.8S rDNA internal transcribed spacer region 1 (ITS1) in plankton samples and high throughput sequencing to characterize Pseudo-nitzschia species composition over a decade in Narragansett Bay, including eight years before the 2016-17 closures and two years following. This metabarcoding method can discriminate nearly all known Pseudo-nitzschia species. Several species recur as year-round residents in Narragansett Bay ( P. pungens var. pungens, P. americana, P. multiseries , and P. calliantha ). Various other species increased in frequency after 2015, and some appeared for the first time during the closure period. Notably, P. australis , a species prevalent in US West Coast HABs and known for high DA production, was not observed in Narragansett Bay until the 2017 closure but has been present in several years after the closures. Annual differences in Pseudo-nitzschia composition were correlated with physical and chemical conditions, predominantly water temperature. The long-term composition trends of Pseudo-nitzschia in Narragansett Bay serve as a baseline for identifying the introduction of new species, understanding shifting assemblages that contributed to the 2016-17 closures, and monitoring species that may be cause for future concern. 
    more » « less
  3. Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands. 
    more » « less
  4. Toxic and harmful algal blooms (HABs) are a global problem affecting human health, marine ecosystems, and coastal economies, the latter through their impact on aquaculture, fisheries, and tourism. As our knowledge and the techniques to study HABs advance, so do international monitoring efforts, which have led to a large increase in the total number of reported cases. However, in addition to increased detections, environmental factors associated with global change, mainly high nutrient levels and warming temperatures, are responsible for the increased occurrence, persistence, and geographical expansion of HABs. The Chilean Patagonian fjords provide an “open-air laboratory” for the study of climate change, including its impact on the blooms of several toxic microalgal species, which, in recent years, have undergone increases in their geographical range as well as their virulence and recurrence (the species Alexandrium catenella, Pseudochattonella verruculosa, and Heterosigma akashiwo, and others of the genera Dinophysis and Pseudo-nitzschia). Here, we review the evolution of HABs in the Chilean Patagonian fjords, with a focus on the established connections between key features of HABs (expansion, recurrence, and persistence) and their interaction with current and predicted global climate-change-related factors. We conclude that large-scale climatic anomalies such as the lack of rain and heat waves, events intensified by climate change, promote the massive proliferation of these species by creating ideal conditions for their growth and persistence, as they affect water-column stratification, nutrient inputs, and reproductive rates. 
    more » « less
  5. The toxic diatom genus Pseudo-nitzschia is a growing presence in the Gulf of Maine (GOM), where regionally unprecedented levels of domoic acid (DA) in 2016 led to the first Amnesic Shellfish Poisoning closures in the region. However, factors driving GOM Pseudo-nitzschia dynamics, DA concentrations, and the 2016 event are unclear. Water samples were collected at the surface and at depth in offshore transects in summer 2012, 2014, and 2015, and fall 2016, and a weekly time series of surface water samples was collected in 2013. Temperature and salinity data were obtained from NERACOOS buoys and measurements during sample collection. Samples were processed for particulate DA (pDA), dissolved nutrients (nitrate, ammonium, silicic acid, and phosphate), and cellular abundance. Species composition was estimated via Automated Ribosomal Intergenic Spacer Analysis (ARISA), a semi-quantitative DNA finger-printing tool. Pseudo-nitzschia biogeography was consistent in the years 2012, 2014, and 2015, with greater Pseudo-nitzschia cell abundance and P. plurisecta dominance in low-salinity inshore samples, and lower Pseudo-nitzschia cell abundance and P. delicatissima and P. seriata dominance in high-salinity offshore samples. During the 2016 event, pDA concentrations were an order of magnitude higher than in previous years, and inshore-offshore contrasts in biogeography were weak, with P. australis present in every sample. Patterns in temporal and spatial variability confirm that pDA increases with the abundance and the cellular DA of Pseudo-nitzschia species, but was not correlated with any one environmental factor. The greater pDA in 2016 was caused by P. australis – the observation of which is unprecedented in the region – and may have been exacerbated by low residual silicic acid. The novel presence of P. australis may be due to local growth conditions, the introduction of a population with an anomalous water mass, or both factors. A definitive cause of the 2016 bloom remains unknown, and continued DA monitoring in the GOM is warranted. 
    more » « less