Abstract Chorus subpackets are the wave packets with modulated amplitudes in chorus waves, commonly observed in the magnetospheres of Earth and other planets. Nonlinear wave‐particle interactions have been suggested to play an important role in subpacket formation, yet the corresponding electron dynamics remain not fully understood. In this study, we have investigated the electron trapping through cyclotron resonance with subpackets, using a self‐consistent general curvilinear plasma simulation code simulation model in dipole fields. The electron trapping period has been quantified separately through electron dynamic analysis and theoretical derivation. Both methods indicate that the electron trapping period is shorter than the subpacket period/duration. We have further established the relation between electron trapping period and subpacket period through statistical analysis using simulation and observational data. Our study demonstrates that the nonlinear electron trapping through cyclotron resonance is the dominant mechanism responsible for subpacket formation.
more »
« less
Resonant Electron Signatures in the Formation of Chorus Wave Subpackets
Abstract A 2‐D GCPIC simulation in a dipole field system has been conducted to explore the excitation of oblique whistler mode chorus waves driven by energetic electrons with temperature anisotropy. The rising tone chorus waves are initially generated near the magnetic equator, consisting of a series of subpackets, and become oblique during their propagation. It is found that electron holes in the wave phase space, which are formed due to the nonlinear cyclotron resonance, oscillate in size with time during subpacket formation. The associated inhomogeneity factor varies accordingly, giving rise to various frequency chirping in different phases of subpackets. Distinct nongyrotropic electron distributions are detected in both wave gyrophase and stationary gyrophase. Landau resonance is found to coexist with cyclotron resonance. This study provides multidimensional electron distributions involved in subpacket formation, enabling us to comprehensively understand the nonlinear physics in chorus wave evolution.
more »
« less
- PAR ID:
- 10527623
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 8
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed in the Earth's magnetosphere and play a significant role in regulating relativistic electron fluxes. The waveform of EMIC waves comprises amplitude‐modulated wave packets, known as “subpackets.” Despite their prevalence, the underlying physics and associated particle dynamics for subpacket formation remain poorly understood. In this study, using Van Allen Probe A observations, we present several rising‐tone EMIC wave events to reveal the downward frequency chirping between adjacent subpackets. By performing a hybrid simulation, we demonstrate for the first time that these wave properties are associated with the oscillation of proton holes in the wave gyrophase space induced by cyclotron resonance. The oscillation modulates the energy transfer between waves and particles, establishing a direct link between subpacket formation in cyclotron waves and nonlinear wave‐particle interactions. This new understanding advances our knowledge of subpacket formation in general and its broader implications in space plasma physics.more » « less
-
Abstract Chorus waves are intense electromagnetic emissions critical in modulating electron dynamics. In this study, we perform two‐dimensional particle‐in‐cell simulations to investigate self‐consistent wave‐particle interactions with oblique chorus waves. We first analyze the electron dynamics sampled from cyclotron and Landau resonances with waves, and then quantify the advection and diffusion coefficients through statistical studies. It is found that phase‐trapped cyclotron resonant electrons satisfy the second‐order resonance condition and gain energy from waves. While phase‐bunched cyclotron resonant electrons cannot remain in resonance for long periods. They transfer energy to waves and are scattered to smaller pitch angles. Landau resonant electrons are primarily energized by waves. For both types of resonances, advection coefficients are greater than diffusion coefficients when the wave amplitude is large. Our study highlights the important role of advection in electron dynamics modulation resulting from nonlinear wave‐particle interactions.more » « less
-
Abstract Short and intense lower‐band chorus wave packets are ubiquitous in the Earth's outer radiation belt. In this article, we perform various Vlasov hybrid simulations, with one or two triggering waves, to study the generation of short chorus packets/subpackets inside long rising tone elements. We show that the length of the generated short wave packets is consistent with a criterion of resonance non‐overlap for two independent superposed waves, and that these chorus packets have similar characteristics as in Van Allen Probes observations. We find that short wave packets are mainly formed near the middle/end of long rising tones for moderate linear growth rates, and everywhere for stronger linear growth rates. Finally, we analyze an event characterized by Time History of Events and Macroscale Interactions during Substorms spacecraft measurements of chorus rising tones near the equator and simultaneous measurements by low altitude ELFIN CubeSats of precipitating and trapped electron fluxes in the same sector. The measured precipitating electron fluxes are well recovered by test particle simulations performed using measured plasma and wave properties. We show that short chorus wave packets of moderate amplitudes (160–250 pT) essentially lead to a more diffusive‐like transport of 50–200 keV electrons toward the loss cone than long packets. In contrast, long chorus packets are found to produce important nonlinear effects via anomalous trapping, which significantly reduces electron precipitation below 150 keV, especially for higher wave amplitudes.more » « less
-
Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.more » « less
An official website of the United States government

