skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resonant Electron Signatures in the Formation of Chorus Wave Subpackets
Abstract A 2‐D GCPIC simulation in a dipole field system has been conducted to explore the excitation of oblique whistler mode chorus waves driven by energetic electrons with temperature anisotropy. The rising tone chorus waves are initially generated near the magnetic equator, consisting of a series of subpackets, and become oblique during their propagation. It is found that electron holes in the wave phase space, which are formed due to the nonlinear cyclotron resonance, oscillate in size with time during subpacket formation. The associated inhomogeneity factor varies accordingly, giving rise to various frequency chirping in different phases of subpackets. Distinct nongyrotropic electron distributions are detected in both wave gyrophase and stationary gyrophase. Landau resonance is found to coexist with cyclotron resonance. This study provides multidimensional electron distributions involved in subpacket formation, enabling us to comprehensively understand the nonlinear physics in chorus wave evolution.  more » « less
Award ID(s):
2247759 2224109
PAR ID:
10527623
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chorus waves are intense electromagnetic emissions critical in modulating electron dynamics. In this study, we perform two‐dimensional particle‐in‐cell simulations to investigate self‐consistent wave‐particle interactions with oblique chorus waves. We first analyze the electron dynamics sampled from cyclotron and Landau resonances with waves, and then quantify the advection and diffusion coefficients through statistical studies. It is found that phase‐trapped cyclotron resonant electrons satisfy the second‐order resonance condition and gain energy from waves. While phase‐bunched cyclotron resonant electrons cannot remain in resonance for long periods. They transfer energy to waves and are scattered to smaller pitch angles. Landau resonant electrons are primarily energized by waves. For both types of resonances, advection coefficients are greater than diffusion coefficients when the wave amplitude is large. Our study highlights the important role of advection in electron dynamics modulation resulting from nonlinear wave‐particle interactions. 
    more » « less
  2. Abstract Chorus subpackets are the wave packets with modulated amplitudes in chorus waves, commonly observed in the magnetospheres of Earth and other planets. Nonlinear wave‐particle interactions have been suggested to play an important role in subpacket formation, yet the corresponding electron dynamics remain not fully understood. In this study, we have investigated the electron trapping through cyclotron resonance with subpackets, using a self‐consistent general curvilinear plasma simulation code simulation model in dipole fields. The electron trapping period has been quantified separately through electron dynamic analysis and theoretical derivation. Both methods indicate that the electron trapping period is shorter than the subpacket period/duration. We have further established the relation between electron trapping period and subpacket period through statistical analysis using simulation and observational data. Our study demonstrates that the nonlinear electron trapping through cyclotron resonance is the dominant mechanism responsible for subpacket formation. 
    more » « less
  3. Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics. 
    more » « less
  4. Abstract In this study, using Van Allen Probes observations we identify 81 events of electron flux bursts with butterfly pitch angle distributions for tens of keV electrons with close correlations with chorus wave bursts in the Earth's magnetosphere. We use the high‐rate electron flux data from Magnetic Electron Ion Spectrometer available during 2013–2019 and the simultaneous whistler‐mode wave measurements from Electric and Magnetic Field Instrument Suite and Integrated Science to identify the correlated events. The events are categorized into 67 upper‐band chorus (0.5–0.8fce) dominated events and 14 other events where lower‐band chorus (0.05–0.5fce) has modest or strong amplitudes (fcerepresents electron cyclotron frequency). Each electron flux burst correlated with chorus has a short timescale of ∼1 min or less, suggesting potential nonlinear effects. The statistical distribution of selected electron burst events tends to occur in the post‐midnight sector atL > 5 under disturbed geomagnetic conditions, and is associated with chorus waves with relatively strong magnetic wave amplitude and small wave normal angle. The frequency dependence of the electron flux peaks agrees with the cyclotron resonant condition, indicating the effects of chorus‐induced electron acceleration. Our study provides new insights into understanding the rapid nonlinear interactions between chorus and energetic electrons. 
    more » « less
  5. Whistler waves propagating nearly parallel to the ambient magnetic field experience a nonlinear instability due to transverse currents when the background plasma has a population of sufficiently low energy electrons. Intriguingly, this nonlinear process may generate oblique electrostatic waves, including whistlers near the resonance cone with properties resembling oblique chorus waves in the Earth’s magnetosphere. Focusing on the generation of oblique whistlers, earlier analysis of the instability is extended here to the case where low-energy background plasma consists of both a “cold” population with energy of a few eV and a “warm” electron component with energy of the order of 100 eV. This is motivated by spacecraft observations in the Earth’s magnetosphere where oblique chorus waves were shown to interact resonantly with the warm electrons. The main new results are: 1) the instability producing oblique electrostatic waves is sensitive to the shape of the electron distribution at low energies. In the whistler range of frequencies, two distinct peaks in the growth rate are typically present for the model considered: a peak associated with the warm electron population at relatively low wavenumbers and a peak associated with the cold electron population at relatively high wavenumbers; 2) overall, the instability producing oblique whistler waves near the resonance cone persists (with a reduced growth rate) even in the cases where the temperature of the cold population is relatively high, including cases where cold population is absent and only the warm population is included; 3) particle-in-cell simulations show that the instability leads to heating of the background plasma and formation of characteristic plateau and beam features in the parallel electron distribution function in the range of energies resonant with the instability. The plateau/beam features have been previously detected in spacecraft observations of oblique chorus waves. However, they have been attributed to external sources and have been proposed to be the mechanism generating oblique chorus. In the present scenario, the causality link is reversed and the instability generating oblique whistler waves is shown to be a possible mechanism for formation of the plateau and beam features. 
    more » « less