The early Martian atmosphere had 0.25 to 4 bar of CO2but thinned rapidly around 3.5 billion years ago. The fate of that carbon remains poorly constrained. The hydrothermal alteration of ultramafic rocks, rich in Fe(II) and Mg, forms both abiotic methane, serpentine, and high-surface-area smectite clays. Given the abundance of ultramafic rocks and smectite in the Martian upper crust and the growing evidence of organic carbon in Martian sedimentary rocks, we quantify the effects of ultramafic alteration on the carbon cycle of early Mars. We calculate the capacity of Noachian-age clays to store organic carbon. Up to 1.7 bar of CO2can plausibly be adsorbed on clay surfaces. Coupling abiotic methanogenesis with best estimates of Mars’ δ13C history predicts a reservoir of 0.6 to 1.3 bar of CO2equivalent. Such a reservoir could be used as an energy source for long-term missions. Our results further illustrate the control of water-rock reactions on the atmospheric evolution of planets.
more »
« less
Mineral Indicators of Geologically Recent Past Habitability on Mars
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water–rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist’s Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named “Rosy Red”, related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water–rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
more »
« less
- Award ID(s):
- 2124859
- PAR ID:
- 10527638
- Editor(s):
- Fantini, Jacques; Brack, André
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Life
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2075-1729
- Page Range / eLocation ID:
- 2349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Comparing compositional models of the terrestrial planets provides insights into physicochemical processes that produced planet-scale similarities and differences. The widely accepted compositional model for Mars assumes Mn and more refractory elements are in CI chondrite proportions in the planet, including Fe, Mg, and Si, which along with O make up >90% of the mass of Mars. However, recent improvements in our understandings on the composition of the solar photosphere and meteorites challenge the use of CI chondrite as an analog of Mars. Here we present an alternative model composition for Mars that avoids such an assumption and is based on data from Martian meteorites and spacecraft observations. Our modeling method was previously applied to predict the Earth’s composition. The model establishes the absolute abundances of refractory lithophile elements in the bulk silicate Mars (BSM) at 2.26 times higher than that in CI carbonaceous chondrites. Relative to this chondritic composition, Mars has a systematic depletion in moderately volatile lithophile elements as a function of their condensation temperatures. Given this finding, we constrain the abundances of siderophile and chalcophile elements in the bulkMars and its core. The Martian volatility trend is consistent with <7 wt% S in its core, which is significantly lower than that assumed in most core models (i.e., >10 wt% S). Furthermore, the occurrence of ringwoodite at the Martian core-mantle boundary might have contributed to the partitioning of O and H into the Martian core.more » « less
-
null (Ed.)Perchlorate (ClO4–) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4– reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo–Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4– into Cl– with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon–water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx– substrates reached 165 h–1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4–. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4– for water purification and space exploration.more » « less
-
Abstract Deeply fractured rocks of meteorite impact craters are suggested as prime niches for subsurface microbial colonization. Methane can be a product of such microbial communities and seeps of methane from impact craters on Earth are of strong interest as they act as analogs for Mars. Previous studies report signs of ancient microbial methanogenesis in the Devonian Siljan meteorite impact structure in Sweden, but the proportion of microbial methane, metabolic pathways, and potential modern activity remain elusive. In this study, gas composition, hydrochemistry, oil organic geochemistry, and microbial community analyses are reported in 400 m deep fractures of the Siljan impact structure. The results showed a dominantly microbial origin for methane, which was supported by highly negative δ13CCH4and positive δ13CCO2values along with multiply substituted isotopologues (Δ13CH3D) that indicated disequilibrium fractionation due to microbial kinetic isotope effects. The presence of C2to C5hydrocarbons suggested a minor thermogenic input in the gas mix. Characterization of the microbial community via 16S rRNA gene amplicon sequencing and real-time PCR indicated a low abundance of several methanogenic archaeal populations, which is common for settings with active methanogenesis. Evidence of oil biodegradation suggested that secondary microbial hydrocarbon utilization was involved in the methanogenesis. Low sulfate and high alkalinity in the groundwaters also suggested a dominantly microbial methane formation driven by infiltration of freshwater that was coupled to sulfate reduction and secondary utilization of early mature thermogenic hydrocarbons.more » « less
-
Abstract Ice and other mineral cements in Mars' shallow subsurface affect the mechanical properties of the shallow crust, the geologic processes that shape the planet's surface, and the search for past or extant Martian life. Cements increase seismic velocities. We use rock physics models to infer cement properties from seismic velocities. Model results confirm that the upper 300 m of Mars beneath InSight is most likely composed of sediments and fractured basalts. Grains within sediment layers are unlikely to be cemented by ice or other mineral cements. Hence, any existing cements are nodular or formed away from grain contacts. Fractures within the basalt layers could be filled with gas, 2% mineral cement and 98% gas, and no more than 20% ice. Thus, no ice‐ or liquid water‐saturated layers likely exist within the upper 300 m beneath InSight. Any past cement at grain contacts has likely been broken by impacts or marsquakes.more » « less
An official website of the United States government

