Uniform Meaning Representation (UMR) is a semantic annotation framework designed to be applicable across typologically diverse languages. However, UMR annotation is a labor-intensive task, requiring significant effort and time especially when no prior annotations are available. In this paper, we present a method for bootstrapping UMR graphs by leveraging Universal Dependencies (UD), one of the most comprehensive multilingual resources, encompassing languages across a wide range of language families. Given UMR’s strong typological and cross-linguistic orientation, UD serves as a particularly suitable starting point for the conversion. We describe and evaluate an approach that automatically derives partial UMR graphs from UD trees, providing annotators with an initial representation to build upon. While UD is not a semantic resource, our method extracts useful structural information that aligns with the UMR formalism, thereby facilitating the annotation process. By leveraging UD’s broad typological coverage, this approach offers a scalable way to support UMR annotation across different languages.
more »
« less
Bootstrapping UMR Annotations for Arapaho from Language Documentation Resources
Uniform Meaning Representation (UMR) is a semantic labeling system in the AMR family designed to be uniformly applicable to typologically diverse languages. The UMR labeling system is quite thorough and can be time-consuming to execute, especially if annotators are starting from scratch. In this paper, we focus on methods for bootstrapping UMR annotations for a given language from existing resources, and specifically from typical products of language documentation work, such as lexical databases and interlinear glossed text (IGT). Using Arapaho as our test case, we present and evaluate a bootstrapping process that automatically generates UMR subgraphs from IGT. Additionally, we describe and evaluate a method for bootstrapping valency lexicon entries from lexical databases for both the target language and English. We are able to generate enough basic structure in UMR graphs from the existing Arapaho interlinearized texts to automate UMR labeling to a significant extent. Our method thus has the potential to streamline the process of building meaning representations for new languages without existing large-scale computational resources.
more »
« less
- Award ID(s):
- 2213805
- PAR ID:
- 10527722
- Editor(s):
- Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen
- Publisher / Repository:
- ELRA and ICCL
- Date Published:
- Format(s):
- Medium: X
- Location:
- https://aclanthology.org/2024.lrec-main.220
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « less
-
Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « less
-
Calzolari, N; Kan, M; Hoste, V; Lenci, A; Sakti, S; Xue, N (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « less
-
This paper presents a “road map” for the annotation of semantic categories in typologically diverse languages, with potentially few linguistic resources, and often no existing computational resources. Past semantic annotation efforts have focused largely on high-resource languages, or relatively low-resource languages with a large number of native speakers. However, there are certain typological traits, namely the synthesis of multiple concepts into a single word, that are more common in languages with a smaller speech community. For example, what is expressed as a sentence in a more analytic language like English, may be expressed as a single word in a more synthetic language like Arapaho. This paper proposes solutions for annotating analytic and synthetic languages in a comparable way based on existing typological research, and introduces a road map for the annotation of languages with a dearth of resources.more » « less
An official website of the United States government

