skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling and simulation of bi‐continuous jammed emulsion membrane reactors for enhanced biphasic enzymatic reactions
Abstract Bi‐continuous jammed emulsion (bijel) membrane reactors, integrating simultaneous reaction and separation, offer a promising avenue for enhancing membrane reactor processes. In this study, we present a comprehensive macroscopic‐scale physicochemical model for tubular bijel membrane reactors and a numerical solution strategy for solving the governing partial differential equations. The model captures the co‐continuous network of two immiscible phases stabilized by nanoparticles at the liquid–liquid interface. We present the derivation of model equations and an efficient numerical solution strategy. The model is validated with experimental results from a conventional enzymatic biphasic membrane reactor for oleuropein hydrolysis, already reported in the literature. Simulation results indicate accurate prediction of reactor behavior, highlighting the potential superiority of bijel membrane reactors over current technologies. This research contributes a valuable tool for scale‐up, design, and optimization of bijel membrane reactors, filling a critical gap in this emerging field.  more » « less
Award ID(s):
2132141
PAR ID:
10527801
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
70
Issue:
11
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Continuous vibrating spatial particle ALD reactors were developed to achieve high powder throughput while minimizing reactor footprint. Unlike fluidized bed reactors, continuous vibrating spatial particle ALD reactors operate below fluidization, using linear vibration to convey particles through alternating regions of precursor gas. Fine powder convection in these vibrating bed reactors is still not well understood, so cohesive discrete element- method (DEM) simulations were performed to investigate the solids flow behavior. Using a Fast Fourier Transform(FFT) algorithm, we constructed a sum-of-sines model for the reactor kinematics based on accelerometer data. Accelerometer results and DEM simulations revealed the role of high-frequency excitations and need for backsliding and sticking avoidance in horizontal conveyors at low-g accelerations. From these observations, we propose a novel sawtooth excitation to enable convection of cohesive fine powders at low flow velocities. The model results were compared to data from an in-house continuous vibrating spatial particle ALD reactor. 
    more » « less
  2. Direct conversion of methane into ethylene through the oxidative coupling of methane (OCM) is a technically important reaction. However, conventional co-fed fixed-bed OCM reactors still face serious challenges in conversion and selectivity. In this paper, we apply a finite element model to simulate OCM reaction in a plug-flow CO2/O2transport membrane (CTM) reactor with a directly captured CO2and O2mixture as a soft oxidizer. The CTM is made of three phases: molten carbonate, 20% Sm-doped CeO2, and LiNiO2. The membrane parameters are first validated by CO2/O2flux data obtained from CTM experiments. The OCM reaction is then simulated along the length of tubular plug-flow reactors filled with a La2O3-CaO-modified CeO2catalyst bed, while a mixture of CO2/O2is gradually added through the wall of the tubular membrane. A 12-step OCM kinetic mechanism is considered in the model for the catalyst bed and validated by data obtained from a co-fed fixed-bed reactor. The modeled results indicate a much-improved OCM performance by membrane reactor in terms of C2-yield and CH4conversion rate over the state-of-the-art, co-fed, fixed-bed reactor. The model further reveals that improved performance is fundamentally rooted in the gradual methane conversion with CO2/O2offered by the plug-flow membrane reactor. 
    more » « less
  3. To cut CO2emissions, we propose to directly convert shale gas into value-added products with a new H2/O2co-transport membrane (HOTM) reactor. A Multiphysics model has been built to simulate the membrane and the catalytic bed with parameters obtained from experimental validation. The model was used to compare C2 yield and CH4conversion rate between the membrane reactor and the state-of-the-art fixed-bed reactor with the same dimensions and operating conditions. The results indicate that (1) the membrane reactor is more efficient in consuming CH4for a given amount of fed O2. (2) The C2 selectivity of the membrane reactor is higher due to the gradual addition of O2into the reactor. (3) The current proposed membrane reactor can have a decent proton molar flux density but most of the proton molar flux will contribute to producing H2O on the feed side under the current operating conditions. The paper for the first-time projects the performance of the membrane reactor for combined H2O/H2removal and C2 production. It could be used as important guidance for experimentalists to design next generation natural gas conversion reactors. 
    more » « less
  4. Membrane reactors (MR) are known for their ability to improve the selectivity and yield of chemical reactions. In this paper, a novel high-pressure MR employing a liquid sweep was applied to the methanol synthesis (MeS) reaction, aiming to increase the per single-pass conversion. For carrying-out the reaction, an asymmetric ceramic membrane was modified with a silylating agent in order to render its pore surface hydrophobic. A commercial MeS catalyst was used for the reaction, loaded in the MR shell-side, while the tube-side was swept with a high boiling point organic solvent with high solubility towards methanol. The membrane reactor was studied under a variety of experimental conditions (different pressures, temperatures, space times, and liquid sweep flow rates) and showed improved carbon conversion when compared to the conventional packed-bed reactor operating under the same conditions. 
    more » « less
  5. Future manned space travel will require efficient recycling of nutrients from organic waste back into food production. Microbial systems are a low-energy, efficient means of nutrient recycling, but their use in a life support system requires predictability and reproducibility in community formation and reactor performance. To assess the reproducibility of microbial community formation in fixed-film reactors, we inoculated replicate anaerobic reactors from two methanogenic inocula: a lab-scale fixed-film, plug-flow anaerobic reactor and an acidic transitional fen. Reactors were operated under identical conditions, and we assessed reactor performance and used 16s rDNA amplicon sequencing to determine microbial community formation. Reactor microbial communities were dominated by similar groups, but differences in community membership persisted in reactors inoculated from different sources. Reactor performance overlapped, suggesting a convergence of both reactor communities and organic matter mineralization. The results of this study suggest an optimized microbial community could be preserved and used to start new, or restart failed, anaerobic reactors in a life support system with predictable reactor performance. 
    more » « less