skip to main content


This content will become publicly available on July 1, 2025

Title: Future of plasma etching for microelectronics: Challenges and opportunities

Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future.

 
more » « less
Award ID(s):
2009219 1805112
PAR ID:
10527928
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
42
Issue:
4
ISSN:
2166-2746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.

     
    more » « less
  2. Atomic layer etching (ALE) is an emerging technology to etch thin films with atomic level precision for microelectronics industry applications. This approach has been previously demonstrated to work on a number of materials; however, in most cases, only electronic properties of these materials following ALE are investigated. Since ALE of complex magnetic materials is extremely important for use in magnetic tunnel junctins (MTJs), it is imperative to understand how this etching approach affects the magnetic properties of the corresponding films. In this work, we studied the surface morphology, elemental composition, and most importantly, the magnetic properties of the technologically relevant magnetic alloy CoFeB before and after ALE treatment, and compared with the traditional ion milling etching technique. Through ferromagnetic resonance measurements, we find while the change in the saturation magnetization from ALE is small, the Gilbert damping of CoFeB is reduced by 11–35%, possibly due to the suppressed two-magnon scattering processes on the sample surface. Our results show that ALE can be used to etch CoFeB nondestructively and may even improve its magnetization dynamics properties. 
    more » « less
  3. In this article, we give an overview about the chemical and physical processes that play a role in etching at lower wafer temperatures. Conventionally, plasma etching processes rely on the formation of radicals, which readily chemisorb at the surface. Molecules adsorb via physisorption at low temperatures, but they lack enough energy to overcome the energy barrier for a chemical reaction. The density of radicals in a typical plasma used in semiconductor manufacturing is one to two orders of magnitude lower than the concentration of the neutrals. Physisorption of neutrals at low temperatures, therefore, increases the neutral concentration on the surface meaningfully and contributes to etching if they are chemically activated. The transport of neutrals in high aspect ratio features is enhanced at low temperatures because physisorbed species are mobile. The temperature window of low temperature etching is bracketed at the low end by condensation including capillary effects and diminished physisorption at the high end. The useful temperature window is chemistry dependent. Besides illuminating the fundamental effects, which make low temperature processing unique, this article illustrates its utility for semiconductor etching applications. 
    more » « less
  4. Failure analysis of microelectronics is essential to identify the root cause of a device’s failure and prevent future failures. This process often requires removing material from the device sample to reach the region of interest, which can be done through various destructive methods, such as mechanical polishing, chemical etching, focused ion beam milling, and laser machining. Among these, laser machining offers a unique combination of speed, precision, and controllability to achieve a high-throughput, highly targeted material removal. In using lasers for processing of microelectronic samples, a much-desired capability is automated endpointing which is crucial for minimizing manual checks and improving the overall process throughput. In this paper, we propose to integrate laser-induced breakdown spectroscopy (LIBS), as a fast and high-precision material detection and process control means, into an ultrashort pulsed laser machining system, to enable vertical endpointing for sample preparation and failure analysis of microelectronics. The capabilities of the proposed system have been demonstrated through several sample processing examples. 
    more » « less
  5. Defying the isotropic nature of traditional chemical etch, metal-assisted chemical etching (MacEtch) has allowed spatially defined anisotropic etching by using patterned metal catalyst films to locally enhance the etch rate of various semiconductors. Significant progress has been made on achieving unprecedented aspect ratio nanostructures using this facile approach, mostly in solution. However, the path to manufacturing scalability remains challenging because of the difficulties in controlling etch morphology (e.g., porosity and aggregation) and etch rate uniformity over a large area. Here, we report the first programmable vapor-phase MacEtch (VP-MacEtch) approach, with independent control of the etchant flow rates, injection and pulse time, and chamber pressure. In addition, another degree of freedom, light irradiation is integrated to allow photo-enhanced VP-MacEtch. Various silicon nanostructures are demonstrated with each of these parameters systematically varied synchronously or asynchronously, positioning MacEtch as a manufacturing technique for versatile arrays of three-dimensional silicon nanostructures. This work represents a critical step or a major milestone in the development of silicon MacEtch technology and also establishes the foundation for VP-MacEtch of compound semiconductors and related heterojunctions, for lasting impact on damage-free 3D electronic, photonic, quantum, and biomedical devices.

     
    more » « less