skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Synthesis of BODIPY-TKI Conjugates and Investigation of Their Ability to Target the Epidermal Growth Factor Receptor
A near-IR BODIPY was covalently conjugated via its isothiocyanate groups to one or two Erlotinib molecules, a known tyrosine kinase inhibitor (TKI), via triethylene glycol spacers, to produce two novel BODIPY-monoTKI and BODIPY-diTKI conjugates. The ability of these conjugates to target the intracellular domain of the epidermal growth factor receptor (EGFR) was investigated using molecular modeling, surface plasma resonance (SPR), EGFR kinase binding assay, time-dependent cellular uptake, and fluorescence microscopy. While both the BODIPY-monoTKI and the BODIPY-diTKI conjugates were shown to bind to the EGFR kinase by SPR and accumulated more efficiently within human HEp2 cells that over-express EGFR than BODIPY alone, only the BODIPY-monoTKI exhibited kinase inhibition activity. This is due to the high hydrophobic character and aggregation behavior of the BODIPY-diTKI in aqueous solutions, as shown by fluorescence quenching. Furthermore, the competition of the two Erlotinibs in the diTKI conjugate for the active site of the kinase, as suggested by computational modeling, might lead to a decrease in binding relative to the monoTKI conjugate. Nevertheless, the efficient cellular uptake and intracellular localization of both conjugates with no observed cytotoxicity suggest that both could be used as near-IR fluorescent markers for cells that over-express EGFR.  more » « less
Award ID(s):
2055190
PAR ID:
10527939
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Targets
Volume:
1
Issue:
1
ISSN:
2813-3137
Page Range / eLocation ID:
48 to 62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Through a simple 1,3-cycloaddition reaction, three BODIPY-peptide conjugates that target the extracellular domain of the epidermal growth factor receptor (EGFR) were prepared and their ability for binding to EGFR was investigated. The peptide ligands K(N3)LARLLT and its cyclic analog cyclo(K(N3)larllt, previously shown to have high affinity for binding to the extracellular domain of EGFR, were conjugated to alkynyl-functionalized BODIPY dyes 1 and 2 via a copper-catalyzed click reaction. This reaction produced conjugates 3, 4, and 5 in high yields (70–82%). In vitro studies using human carcinoma HEp2 cells that overexpress EGFR demonstrated high cellular uptake, particularly for the cyclic peptide conjugate 5, and low cytotoxicity in light (~1 J·cm−2) and darkness. Surface plasmon resonance (SPR) results show binding affinity of the three BODIPY-peptide conjugates for EGFR, particularly for 5 bearing the cyclic peptide. Competitive binding studies using three cell lines with different expressions of EGFR show that 5 binds specifically to EGFR-overexpressing colon cancer cells. Among the three conjugates, 5 bearing the cyclic peptide exhibited the highest affinity for binding to the EGFR protein. 
    more » « less
  2. Abstract Three BODIPY‐peptide conjugates designed to target the epidermal growth factor receptor (EGFR) at the extracellular domain were synthesized, and their specificity for binding to EGFR was investigated. Peptide sequences containing seven amino acids, GLARLLT (2)and KLARLLT (4), and 13 amino acids, GYHWYGYTPQNVI (3), were conjugated to carboxyl BODIPY dye (1) by amide bond formation in up to 73% yields. The BODIPY‐peptide conjugates and their “parent” peptides were determined to bind to EGFR experimentally using SPR analysis and were further investigated using computational methods (AutoDock). Results of SPR, competitive binding and docking studies propose that conjugate6including the GYHWYGYTPQNVI sequence binds to EGFR more effectively than conjugates5and7, bearing the smaller peptide sequences. Findings in human carcinoma HEp2 cells overexpressing EGFR showed nontoxic behavior in the presence of activated light (1.5 J cm−2) and in the absence of light for all BODIPYs. Furthermore, conjugate6showed about five‐fold higher accumulation within HEp2 cells compared with conjugates5and7, localizing preferentially in the cell ER and lysosomes. Our findings suggest that BODIPY‐peptide conjugate6is a promising contrast agent for detection of colorectal cancer and potentially other EGFR‐overexpressing cancers. 
    more » « less
  3. Extracellular vesicle (EV)-mediated transfer of biomolecules plays an essential role in intercellular communication and may improve targeted drug delivery. In the past decade, various approaches to EV surface modification for targeting specific cells or tissues have been proposed, including genetic engineering of parental cells or postproduction EV engineering. However, due to technical limitations, targeting moieties of engineered EVs have not been thoroughly characterized. Here, we report the bioluminescence resonance energy transfer (BRET) EV reporter, PalmReNL-based dual-reporter platform for characterizing the cellular uptake of tumor-homing peptide (THP)-engineered EVs, targeting PDL1, uPAR, or EGFR proteins expressed in MDA-MB-231 breast cancer cells, simultaneously by bioluminescence measurement and fluorescence microscopy. Bioluminescence analysis of cellular EV uptake revealed the highest binding efficiency of uPAR-targeted EVs, whereas PDL1-targeted EVs showed slower cellular uptake. EVs engineered with two known EGFR-binding peptides via lipid nanoprobes did not increase cellular uptake, indicating that designs of EGFR-binding peptide conjugation to the EV surface are critical for functional EV engineering. Fluorescence analysis of cellular EV uptake allowed us to track individual PalmReNL-EVs bearing THPs in recipient cells. These results demonstrate that the PalmReNL-based EV assay platform can be a foundation for high-throughput screening of tumor-targeted EVs. 
    more » « less
  4. In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics. 
    more » « less
  5. null (Ed.)
    Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review. 
    more » « less