A bstract Strong (sublattice or tower) formulations of the Weak Gravity Conjecture (WGC) imply that, if a weakly coupled gauge theory exists, a tower of charged particles drives the theory to strong coupling at an ultraviolet scale well below the Planck scale. This tower can consist of low-spin states, as in Kaluza-Klein theory, or high-spin states, as with weakly-coupled strings. We provide a suggestive bottom-up argument based on the mild p -form WGC that, for any gauge theory coupled to a fundamental axion through a θF ∧ F term, the tower is a stringy one. The charge-carrying string states at or below the WGC scale gM Pl are simply axion strings for θ , with charged modes arising from anomaly inflow. Kaluza-Klein theories evade this conclusion and postpone the appearance of high-spin states to higher energies because they lack a θF ∧ F term. For abelian Kaluza-Klein theories, modified arguments based on additional abelian groups that interact with the Kaluza-Klein gauge group sometimes pinpoint a mass scale for charged strings. These arguments reinforce the Emergent String and Distant Axionic String Conjectures. We emphasize the unproven assumptions and weak points of the arguments, which provide interesting targets for further work. In particular, a sharp characterization of when gauge fields admit θF ∧ F couplings and when they do not would be immensely useful for particle phenomenology and for clarifying the implications of the Weak Gravity Conjecture.
more »
« less
Weak gravity conjecture
The weak gravity conjecture holds that in a theory of quantum gravity any gauge force must mediate interactions stronger than gravity for some particles. This statement has surprisingly deep and extensive connections to many different areas of physics and mathematics. Several variations on the basic conjecture have been proposed, including statements that are much stronger but are nonetheless satisfied by all known consistent quantum gravity theories. These related conjectures and the evidence for their validity in the string theory landscape are reviewed. Also reviewed are a variety of arguments for these conjectures, which tend to fall into two categories: qualitative arguments that claim the conjecture is plausible based on general principles and quantitative arguments for various special cases or analogs of the conjecture. The implications of these conjectures for particle physics, cosmology, general relativity, and mathematics are also outlined. Finally, important directions for future research are highlighted.
more »
« less
- Award ID(s):
- 2112800
- PAR ID:
- 10527993
- Publisher / Repository:
- RMP
- Date Published:
- Journal Name:
- Reviews of Modern Physics
- Volume:
- 95
- Issue:
- 3
- ISSN:
- 0034-6861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We survey the current state of affairs in the study of thresholds and sharp thresholds in random structures on the occasion of the recent proof of the Kahn–Kalai conjecture by Park and Pham and the fairly recent proof of the satisfiability conjecture for large k by Ding, Sly, and Sun. Random discrete structures appear as fundamental objects of study in many scientific and mathematical fields including statistical physics, combinatorics, algorithms and complexity, social choice theory, coding theory, and statistics. While the models and properties of interest in these fields vary widely, much progress has been made through the development of general tools applicable to large families of models and properties all at once. Historically, these tools originated to solve or make progress on specific difficult conjectures in the areas mentioned above. We will survey recent progress on some of these hard problems and describe some challenges for the future. This survey was prepared in conjunction with a talk for the Current Events Bulletin at the 2024 Joint Mathematics Meetings (JMM) in San Francisco, California.more » « less
-
The Sharpened Distance Conjecture and Tower Scalar Weak Gravity Conjecture are closely related but distinct conjectures, neither one implying the other. Motivated by examples, I propose that both are consequences of two new conjectures: 1. The infinite distance geodesics passing through an arbitrary point ϕ in the moduli space populate a dense set of directions in the tangent space at ϕ. 2. Along any infinite distance geodesic, there exists a tower of particles whose scalar-charge-to-mass ratio (–∇log m) projection everywhere along the geodesic is greater than or equal to 1/√(d-2). I perform several nontrivial tests of these new conjectures in maximal and half-maximal supergravity examples. I also use the Tower Scalar Weak Gravity Conjecture to conjecture a sharp bound on exponentially heavy towers that accompany infinite distance limits.more » « less
-
null (Ed.)Quantum computational supremacy arguments, which describe a way for a quantum computer to perform a task that cannot also be done by a classical computer, typically require some sort of computational assumption related to the limitations of classical computation. One common assumption is that the polynomial hierarchy ( P H ) does not collapse, a stronger version of the statement that P ≠ N P , which leads to the conclusion that any classical simulation of certain families of quantum circuits requires time scaling worse than any polynomial in the size of the circuits. However, the asymptotic nature of this conclusion prevents us from calculating exactly how many qubits these quantum circuits must have for their classical simulation to be intractable on modern classical supercomputers. We refine these quantum computational supremacy arguments and perform such a calculation by imposing fine-grained versions of the non-collapse conjecture. Our first two conjectures poly3-NSETH( a ) and per-int-NSETH( b ) take specific classical counting problems related to the number of zeros of a degree-3 polynomial in n variables over F 2 or the permanent of an n × n integer-valued matrix, and assert that any non-deterministic algorithm that solves them requires 2 c n time steps, where c ∈ { a , b } . A third conjecture poly3-ave-SBSETH( a ′ ) asserts a similar statement about average-case algorithms living in the exponential-time version of the complexity class S B P . We analyze evidence for these conjectures and argue that they are plausible when a = 1 / 2 , b = 0.999 and a ′ = 1 / 2 .Imposing poly3-NSETH(1/2) and per-int-NSETH(0.999), and assuming that the runtime of a hypothetical quantum circuit simulation algorithm would scale linearly with the number of gates/constraints/optical elements, we conclude that Instantaneous Quantum Polynomial-Time (IQP) circuits with 208 qubits and 500 gates, Quantum Approximate Optimization Algorithm (QAOA) circuits with 420 qubits and 500 constraints and boson sampling circuits (i.e. linear optical networks) with 98 photons and 500 optical elements are large enough for the task of producing samples from their output distributions up to constant multiplicative error to be intractable on current technology. Imposing poly3-ave-SBSETH(1/2), we additionally rule out simulations with constant additive error for IQP and QAOA circuits of the same size. Without the assumption of linearly increasing simulation time, we can make analogous statements for circuits with slightly fewer qubits but requiring 10 4 to 10 7 gates.more » « less
-
Despite their successes, machine learning techniques are often stochastic, error-prone and blackbox. How could they then be used in fields such as theoretical physics and pure mathematics for which error-free results and deep understanding are a must? In this Perspective, we discuss techniques for obtaining zero-error results with machine learning, with a focus on theoretical physics and pure mathematics. Non-rigorous methods can enable rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth 4D Poincaré conjecture in low-dimensional topology. We also discuss connections between machine learning theory and mathematics or theoretical physics such as a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman’s formulation of the Ricci flow that was used to solve the 3D Poincaré conjecture.more » « less
An official website of the United States government

