skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) Ground-based Vector Magnetic Field 1 s Data
The AAL-PIP collection of magnetometers is part of an autonomous adaptive low-power instrument platform (AAL-PIP) chain of six stations that has been established on East Antarctic Plateau along the 40 deg geomagnetic meridian, to investigate interhemispheric geomagnetically conjugate current systems, waves, and other space weather phenomena in Polar Regions. These six stations, PG0 to PG5, which run autonomously with solar power and two-way satellite communication, are designated at the geomagnetically conjugate locations of the West Greenland geomagnetic chain covering magnetic latitudes from 70 deg to 80 deg.  more » « less
Award ID(s):
1744828
PAR ID:
10528057
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Virginia Tech
Date Published:
Subject(s) / Keyword(s):
Magnetometer data 1 second Antarctica
Format(s):
Medium: X
Location:
Antarctica
Right(s):
Creative Commons Zero v1.0 Universal
Institution:
Virginia Tech
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nearly all studies of impulsive geomagnetic disturbances (GMDs, also known as magnetic perturbation events MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study, we investigated GMD occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL‐PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL‐PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS‐LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed (a) a seasonal dependence (larger in the winter hemisphere), and (b) a dependence on the sign of theBycomponent of the interplanetary magnetic field (IMF): GMDs were larger in the north (south) when IMFBywas >0 (<0). A majority of events occurred nearly simultaneously (to within ±3 min) independent of the sign ofByas long as |By| ≤ 2 |Bz|. As has been found in earlier studies, IMFBzwas <0 prior to most events. When IMF data from Geotail, Themis B, and/or Themis C in the near‐Earth solar wind were used to supplement the time‐shifted OMNI IMF data, the consistency of these IMF orientations was improved. 
    more » « less
  2. Abstract Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic fieldBzthat exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox. 
    more » « less
  3. By fusing data obtained from finely spaced continental-scale, magnetotelluric (MT) measurements used for geophysical imaging of the electrical conductivity variations of the Earth's crust and mantle, real-time data of the geomagnetic field variations at a sparse network of fixed geomagnetic observatory and variometer stations, power transmission system sensor data such as neutral ground return current, synchrophasor and other sensor data, information on power grid topology and state, and by applying algorithms we have developed to project the real-time stream of magnetic observatory and variometer data through the frequency-dependent tensor impedances derived from the MT data at each temporary station, we calculate the anomalous voltages on power transmission substations induced by geomagnetically induced currents. Our solution accounts for the first-order impacts on the induced voltages that are due to the effects of 3-D variations in ground (Earth's crust and upper mantle) electrical conductivity structure. These effects when convolved with the path integral of the induced vector ground electric field along the transmission lines are the dominant term in determining the intensity of the geomagnetically induced currents in the system; considerably more so than geomagnetic latitude scaling effects. We discuss integration of real-time geophysical estimates of geomagnetic disturbance induced substation voltages with DC and AC power flow simulations on increasingly realistic models of the topology and state of regional power grids. We are integrating our workflow with the open source PowerModelsGMD.jl power flow simulator developed at Los Alamos National Laboratory, and describe simulations of real-time assessments of stress on critical assets of the power grid including reactive power loss, phase deviations, transformer heating and other metrics of transmission system stress. Such efforts to provide a real-time assessment of risk to critical assets can also inform statistical assessments of system vulnerabilities to "100-yr" or "Carrington" level geomagnetic disturbances. We will discuss how such efforts are informing the development of updated standards that may impact the future regulatory environment that governs efforts to maintain a resilient power transmission system. 
    more » « less
  4. Abstract Low‐cost instrumentation combined with volunteering and citizen science educational initiatives allowed the deployment of L‐band scintillation monitors to remote sense areas that are geomagnetically conjugated and located at low‐to‐mid latitudes in the American sector (Quebradillas in Puerto Rico and Santa Maria in Brazil). On 10 and 11 October, 2023, both monitors detected severe scintillations, some reaching dip latitudes beyond 26°N. The observations show conjugacy in the spatio‐temporal evolution of the scintillation‐causing irregularities. With the aid of collocated all‐sky airglow imager observations, it was shown that the observed scintillation event was caused by extreme equatorial plasma bubbles (EPBs) reaching geomagnetic apex altitudes exceeding 2,200 km. The observations suggest that geomagnetic conjugate large‐scale structures produced conditions for the development of intermediate scale (few 100 s of meters) in both hemispheres, leading to scintillation at conjugate locations. Finally, unlike previous reports, it is shown that the extreme EPBs‐driven scintillation reported here developed under geomagnetically quiet conditions. 
    more » « less
  5. Abstract We present a characterization of transient‐large‐amplitude (TLA) geomagnetic disturbances that are relevant to geomagnetically induced currents (GIC). TLA events are defined as one or more short‐timescale (<60 s) dB/dt signature with magnitude ≥6 nT/s. The TLA events occurred at six stations of the Magnetometer Array for Cusp and Cleft Studies throughout 2015. A semi‐automated dB/dt search algorithm was developed to identify 38 TLA events in the ground magnetometer data. While TLA dB/dts do not drive GICs directly, we show that second‐timescale dB/dts often occur in relation to or within larger impulsive geomagnetic disturbances. Sudden commencements are not the main driver, rather the events are more likely to occur 30 min after a substorm onset or within a nighttime magnetic perturbation event. The characteristics of TLA events suggest localized ionospheric source currents that may play a key role in generating some extreme geomagnetic impulses that can lead to GICs. 
    more » « less