Abstract Many nucleosynthetic channels create the elements, but two-parameter models characterized byαand Fe nonetheless predict stellar abundances in the Galactic disk to accuracies of 0.02–0.05 dex for most measured elements, near the level of current abundance uncertainties. It is difficult to make individual measurements more precise than this to investigate lower-amplitude nucleosynthetic effects, but population studies of mean abundance patterns can reveal more subtle abundance differences. Here, we look at the detailed abundances for 67,315 stars from the Apache Point Observatory Galactic Evolution Experiment (or APOGEE) Data Release 17, but in abundance residuals away from a best-fit two-parameter, data-driven nucleosynthetic model. We find that these residuals show complex structures with respect to age, guiding radius, and vertical action that are not random and are also not strongly correlated with sources of systematic error such as ,Teff, and radial velocity. The residual patterns, especially in Na, C+N, Mn, and Ce, trace kinematic structures in the Milky Way, such as the inner disk, thick disk, and flared outer disk. A principal component analysis suggests that most of the observed structure is low-dimensional and can be explained by a few eigenvectors. We find that some, but not all, of the effects in the low-αdisk can be explained by dilution with fresh gas, so that the abundance ratios resemble those of stars with higher metallicity. The patterns and maps we provide can be combined with accurate forward models of nucleosynthesis, star formation, and gas infall to provide a more detailed picture of star and element formation in different Milky Way components. 
                        more » 
                        « less   
                    
                            
                            Chemical Cartography with APOGEE: Two-process Parameters and Residual Abundances for 288,789 Stars from Data Release 17
                        
                    
    
            Abstract Stellar abundance measurements are subject to systematic errors that induce extra scatter and artificial correlations in elemental abundance patterns. We derive empirical calibration offsets to remove systematic trends with surface gravity in 17 elemental abundances of 288,789 evolved stars from the SDSS APOGEE survey. We fit these corrected abundances as the sum of a prompt process tracing core-collapse supernovae and a delayed process tracing Type Ia supernovae, thus recasting each star’s measurements into the amplitudesAccandAIaand the element-by-element residuals from this two-parameter fit. As a first application of this catalog, which is 8× larger than that of previous analyses that used a restricted range, we examine the median residual abundances of 14 open clusters, nine globular clusters, and four dwarf satellite galaxies. Relative to field Milky Way disk stars, the open clusters younger than 2 Gyr show ≈0.1−0.2 dex enhancements of the neutron-capture element Ce, and the two clusters younger than 0.5 Gyr also show elevated levels of C+N, Na, S, and Cu. Globular clusters show elevated median abundances of C+N, Na, Al, and Ce, and correlated abundance residuals that follow previously known trends. The four dwarf satellites show similar residual abundance patterns despite their different star formation histories, with ≈0.2–0.3 dex depletions in C+N, Na, and Al and ≈0.1 dex depletions in Ni, V, Mn, and Co. We provide our catalog of corrected APOGEE abundances, two-process amplitudes, and residual abundances, which will be valuable for future studies of abundance patterns in different stellar populations and of additional enrichment processes that affect galactic chemical evolution. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307621
- PAR ID:
- 10528379
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 180
- Size(s):
- Article No. 180
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Large-scale surveys open the possibility to investigate Galactic evolution both chemically and kinematically; however, reliable stellar ages remain a major challenge. Detailed chemical information provided by high-resolution spectroscopic surveys of the stars in clusters can be used as a means to calibrate recently developed chemical tools for age-dating field stars. Using data from the Open Cluster Abundances and Mapping survey, based on the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment 2 survey, we derive a new empirical relationship between open cluster stellar ages and the carbon-to-nitrogen ([C/N]) abundance ratios for evolved stars, primarily those on the red giant branch. With this calibration, [C/N] can be used as a chemical clock for evolved field stars to investigate the formation and evolution of different parts of our Galaxy. We explore how mixing effects at different stellar evolutionary phases, like the red clump, affect the derived calibration. We have established the [C/N]–age calibration for APOGEE Data Release 17 (DR17) giant star abundances to be , usable for , derived from a uniform sample of 49 clusters observed as part of APOGEE DR17 applicable primarily to metal-rich, thin- and thick-disk giant stars. This measured [C/N]–age APOGEE DR17 calibration is also shown to be consistent with asteroseismic ages derived from Kepler photometry.more » « less
- 
            Abstract We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with and . (ii) A metallicity gradient of −0.54 ± 0.07 dex (−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with and and a red RGB with and . (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up.more » « less
- 
            Abstract AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass ( MJup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We usepetitRADTRANSto perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient , a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determinesTeff≈ 800 K, dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.more » « less
- 
            Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
