skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The HandyTech's Coming Between 1 and 4: Privacy Opportunities and Challenges for the IoT Handyperson
Smart homes are gaining popularity due to their convenience and efficiency, both of which come at the expense of increased complexity of Internet of Things (IoT) devices. Due to the number and heterogeneity of IoT devices, technologically inexperienced or time-burdened residents are unlikely to manage the setup and maintenance of IoT apps and devices. We highlight the need for a "HandyTech": a technically skilled contractor who can set up, repair, debug, monitor, and troubleshoot home IoT systems. In this paper, we consider the potential privacy challenges posed by the HandyTech, who has the ability to access IoT devices and private data. We do so in the context of single and multi-user smart homes, including rental units, condominiums, and temporary guests or workers. We examine the privacy harms that can arise when a HandyTech has legitimate access to information, but uses it in unintended ways. By providing insights for the development of privacy control policies and measures in-home IoT environments in the presence of the HandyTech, we capture the privacy concerns raised by other visitors to the home, including temporary residents, part-time workers, etc. This helps lay a foundation for the broad set of privacy concerns raised by home IoT systems.  more » « less
Award ID(s):
1955805 1955228
PAR ID:
10528538
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400702358
Page Range / eLocation ID:
129 to 134
Subject(s) / Keyword(s):
Security and privacy Human and societal aspects of security and privacy
Format(s):
Medium: X
Location:
Copenhagen Denmark
Sponsoring Org:
National Science Foundation
More Like this
  1. The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested. 
    more » « less
  2. The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested. 
    more » « less
  3. Smart home cameras raise privacy concerns in part because they frequently collect data not only about the primary users who deployed them but also other parties -- who may be targets of intentional surveillance or incidental bystanders. Domestic employees working in smart homes must navigate a complex situation that blends privacy and social norms for homes, workplaces, and caregiving. This paper presents findings from 25 semi-structured interviews with domestic childcare workers in the U.S. about smart home cameras, focusing on how privacy considerations interact with the dynamics of their employer-employee relationships. We show how participants’ views on camera data collection, and their desire and ability to set conditions on data use and sharing, were affected by power differentials and norms about who should control information flows in a given context. Participants’ attitudes about employers’ cameras often hinged on how employers used the data; whether participants viewed camera use as likely to reinforce negative tendencies in the employer-employee relationship; and how camera use and disclosure might reflect existing relationship tendencies. We also suggest technical and social interventions to mitigate the adverse effects of power imbalances on domestic employees’ privacy and individual agency. 
    more » « less
  4. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less
  5. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less