With the increasing adoption of smart home devices, users rely on device automation to control their homes. This automation commonly comes in the form of smart home routines, an abstraction available via major vendors. Yet, questions remain about how a system should best handle conflicts in which different routines access the same devices simultaneously. In particular---among the myriad ways a smart home system could handle conflicts, which of them are currently utilized by existing systems, and which ones result in the highest user satisfaction? We investigate the first question via a survey of existing literature and find a set of conditions, modifications, and system strategies related to handling conflicts. We answer the second question via a scenario-based Mechanical-Turk survey of users interested in owning smart home devices and current smart home device owners (N=197). We find that: (i) there is no context-agnostic strategy that always results in high user satisfaction, and (ii) users' personal values frequently form the basis for shaping their expectations of how routines should execute.
more »
« less
Contextualizing Interpersonal Data Sharing in Smart Homes
A key feature of smart home devices is monitoring the environment and recording data. These devices provide security via motion-detection video alerts, cost-savings via thermostat usage history, and peace of mind via functions like auto-locking doors or water leak detectors. At the same time, the sharing of this information in interpersonal relationships---though necessary---is currently accomplished on an all-or-nothing basis. This can easily lead to oversharing in a multi-user environment. Although prior work has studied people's perceptions of information sharing with vendors or ISPs, the sharing of household data among users who interact personally is less well understood. Interpersonal situations make data sharing much more context-based and, thus, more complicated. In this paper, we use themes from the theory of contextual integrity in an online survey (n=1,992) to study how people perceive data sharing with others in smart homes and inform future designs and research. Our results show that data recipients in a smart home can be reduced to three major groups, and data types matter more than device types. We also found that the types of access control desired by users can vary from scenario to scenario. Depending on whom they are sharing data with and about what data, participants expressed varying levels of comfort when presented with different types of access control (e.g., explicit approval versus time-limited access). Taken together, this provides strong evidence that a more dynamic access control system is needed, and we can design it in a more usable way.
more »
« less
- PAR ID:
- 10528550
- Publisher / Repository:
- PoPETs
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2024
- Issue:
- 2
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 295 to 312
- Subject(s) / Keyword(s):
- IoT, Smart home, Privacy, Access control, Contextual Integrity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the smart home landscape, there is an increasing trend of homeowners sharing device access outside their homes. This practice presents unique challenges in terms of security and privacy. In this study, we evaluated the co-management features in smart home management systems to investigate 1) how homeowners establish and authenticate shared users’ access, 2) the access control mechanisms, and 3) the management, monitoring, and revocation of access for shared devices. We conducted a systematic feature analysis of 11 Android and iOS mobile applications (“apps”) and 2 open-source platforms designed for smart home management. Our study revealed that most smart home systems adopt a centralized control model which necessitates shared users to utilize the primary app for device access, while providing diverse sharing mechanisms, such as email or phone invitations and unique codes, each presenting distinct security and privacy advantages. Moreover, we discovered a variety of access control options, ranging from full access to granular access control such as time-based restrictions which, while enhancing security and convenience, necessitate careful management to avoid user confusion. Additionally, our findings highlighted the prevalence of comprehensive methods for monitoring shared users’ access, with most systems providing detailed logs for added transparency and security, although there are some restrictions to safeguard homeowner privacy. Based on our findings, we recommend enhanced access control features to improve user experience in shared settings.more » « less
-
One of the biggest privacy concerns of smart home users is enforcing limits on household members' access to devices and each other's data. While people commonly express preferences for intricate access control policies, in practice they often settle for less secure defaults. As an alternative, this paper investigates "optimistic access control" policies that allow users to obtain access and data without pre-approval, subject to oversight from other household members. This solution allows users to leverage the interpersonal trust they already rely on in order to establish privacy boundaries commensurate with more complex access control methods, while retaining the convenience of less secure strategies. To evaluate this concept, we conducted a series of surveys with 604 people total, studying the acceptability and perceptions of this approach. We found that a number of respondents preferred optimistic modes to existing access control methods and that interest in optimistic access varied with device type and household characteristics.more » « less
-
Smart home devices are constantly exchanging data with a variety of remote endpoints. This data encompasses diverse information, from device operation and status to sensitive user information like behavioral usage patterns. However, there is a lack of transparency regarding where such data goes and with whom it is potentially shared. This paper investigates the diverse endpoints that smart home Internet-of-Things (IoT) devices contact to better understand and reason about the IoT backend infrastructure, thereby providing insights into potential data privacy risks. We analyze data from 5,413 users and 25,123 IoT devices using the IoT Inspector, an open-source application allowing users to monitor traffic from smart home devices on their networks. First, we develop semi-automated techniques to map remote endpoints to organizations and their business types to shed light on their potential relationships with IoT end products. We discover that IoT devices contact more third or support-party domains than first-party domains. We also see that the distribution of contacted endpoints varies based on the user's location and across vendors manufacturing similar functional devices, where some devices are more exposed to third parties than others. Our analysis also reveals the major organizations providing backend support for IoT smart devices and provides insights into the temporal evolution of cross-border data-sharing practices.more » « less
-
Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
An official website of the United States government

