This content will become publicly available on November 21, 2025
- Award ID(s):
- 2246864
- PAR ID:
- 10528679
- Publisher / Repository:
- The American Society of Mechanical Engineers (ASME)
- Date Published:
- Subject(s) / Keyword(s):
- Friction, Wear, Lubricants, Additives, Ionic Liquids
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
While ionic liquids (ILs) have attracted much attention as potential next-generation lubricant additives, their implementation in oil formulations has been hindered by their limited solubility in hydrocarbon fluids and corrosivity. Here, we encapsulate an oil-insoluble IL that has been studied in lubrication science, namely 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([HMIM][TFSI]), within poly(ethylene glycol dimethacrylate-buytl methacrylate copolymer) (poly(EGDM-c-BMA)) microshells using a mini-emulsion polymerization process. The synthesized poly(EGDM-c-BMA)-encapsulated [HMIM][TFSI] microparticles are shown to be dispersible in a non-polar, synthetic oil (i.e., poly-α-olefin). Tribological experiments indicated that the microcapsules act as an additive reservoir that reduces friction by releasing the encapsulated IL at the sliding interface following the mechanical rupture of the polymer shell. X-ray photoelectron spectroscopy (XPS) measurements provided evidence that [HMIM][TFSI] does not tribochemically react on steel surfaces to create a reaction layer, thus suggesting that this IL reduces friction by generating a solid-like, layered structure upon nanoconfinement at sliding asperities, as proposed by previous nanoscale studies. The results of this work do not only provide new insights into the lubrication mechanism of ILs when used as additives in base oils in general, but also establish a new, broadly-applicable framework based on polymer encapsulation for utilizing ILs or other compounds with limited solubility as additives for oil formulations.more » « less
-
The friction and wear behavior of palladium (Pd)-rich amorphous alloy (Pd43Cu27Ni10P20) against 440C stainless steel under ionic liquids as lubricants, i.e., 1-nonyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([C9C1im][NTf2]), were investigated using a ball-on-disc reciprocating tribometer at ambient, 100 and 200 °C with different sliding speeds of 3 and 7 mm/s, whose results were compared to those from crystalline Pd samples. The measured coefficient of friction (COF) and wear were affected by both temperature and sliding speed. The COF of crystalline Pd samples dramatically increased when the temperature increased, whereas the COF of the amorphous Pd alloy samples remained low. As the sliding speed increased, the COF of both Pd samples showed decreasing trends. From the analysis of a 3D surface profilometer and scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) data, three types of wear (i.e., delamination, adhesive, and abrasive wear) were observed on the crystalline Pd surfaces, whereas the amorphous Pd alloy surfaces produced abrasive wear only. In addition, X-ray photoelectron spectroscopy (XPS) measurements were performed to study the formation of tribofilm. It was found that the chemical reactivity at the contacting interface increased with temperature and sliding contact speed. The ionic liquids (ILs) were effective as lubricants when the applied temperature and sliding speed were 200 °C and 7 mm/s, respectively.more » « less
-
Abstract Ionic liquids (ILs) have attracted intensive research interest due to their outstanding physiochemical properties. However, comprehensive design is necessary for targeted applications and has rarely been conducted. As a result, the industry‐scale application of ILs is still very limited. In this academia–industry collaborative research among the University of Pittsburgh, Virginia Tech. University, and Seagate Technology LLC, we report the design, synthesis, molecular dynamics (MD) simulation, and characterization of a nanometer‐thick IL, which contains abundant fluorinated segments and a hydroxyl endgroup, as the next‐generation nano‐lubricant for hard disk drives (HDDs). The lab‐ and industry‐level testing results indicate that the IL lubricant performs significantly better than the state‐of‐the‐art lubricant, that is, perfluoropolyether (PFPE) that has been utilized for three decades in the HDD industry in two key functions: thermal stability and fly clearance. Meanwhile, the IL lubricant also shows excellent lubricity and durability. The outstanding performance of the IL has been attributed to its unique molecular structure on the solid substrate, which is supported by MD simulation results. Our work establishes the IL as a promising candidate among the next‐generation media lubricants in HDD industry. Meanwhile, the finding obtained here has important implications in many other applications involving nano‐lubricants.
-
SAE ; Transactions (Ed.)Alternative fuels are sought after because they produce lower emissions and sometimes, they have feedstock and production advantages over fossil fuels, but their wear effects on engine components are largely unknown. In this study, the lubricity properties of a Fischer-Tropsch Gas-to-Liquid alternative fuel (Synthetic Paraffinic Kerosene-S8) and of Jet-A fuel were investigated and compared to those of Ultra Low Sulphur Diesel (ULSD). A pin-on-disk tribometer was employed to test wear and friction for a material pair of an AISI 316 steel ball on an AISI 1018 steel disk when lubricated by the fuels in this research work. Advanced digital microscopy was used to compare the wear patterns of the disks. Viscosity and density analysis of the tested fluids were also carried out.Tribometry for the fuel showed that S8 fell between Jet-A and ULSD when friction force was calculated and showed higher wear over time and after each test when compared to that of Jet-A and ULSD. An initially higher running-in friction force of 0.35N to 0.38N was observed for all three tested fluids, and then quasi-steady-state lower values of friction force of .310N for S8, 0.320 N for Jet-A and 0.295N for ULSD (the lowest observed).Wear values obtained by mass loss of the tested AISI 108 steel disks show that Jet-A and the reference fuel ULSD may yield lower wear (which is associated to better lubricity) than that of S8, and microscopy images are consistent with the wear results.
-
Abstract While phosphonium phosphate ionic liquids (ILs) have been evaluated as additives for engine oils owing to their excellent physico‐chemical properties, miscibility with hydrocarbon fluids, and promising tribological properties, their lubrication mechanism is still not established. Here, atomic force microscopy (AFM) nanotribological experiments are performed using diamond‐like carbon‐coated silicon tips sliding on air‐oxidized steel in neat trihexyltetradecylphosphonium bis(2‐ethylhexyl)phosphate IL. The AFM results indicate a reduction in friction only after the removal of the native oxide layer from steel. Laterally resolved analyses of the steel surface chemistry reveal a higher concentration of bis(2‐ethylhexyl)phosphate ions adsorbed on regions where the native oxide is mechanically removed together with a change in surface electrostatic potential. These surface modifications are proposed to be induced by a change in adsorption configuration of bis(2‐ethylhexyl)phosphate anions on metallic iron compared to their configuration on iron oxide together with a reduction of surface roughness, which lead to the formation of a densely packed, lubricious boundary layer only on metallic iron.