skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species, Vibrio natriegens
ABSTRACT The fastest replicating bacteriumVibrio natriegensis a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential ofV. natriegensand collectively expand upon its utility as an emerging model organism for synthetic biology. IMPORTANCEVibrio natriegensis an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of theV. natriegensmodel system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing “clean” derivative cells. Finally, we show the full extent of this technique’s capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to theVibriocommunity and specifically to the advancement ofV. natriegensas a model system.  more » « less
Award ID(s):
2023680
PAR ID:
10528746
Author(s) / Creator(s):
; ;
Editor(s):
Cardona, Silvia T
Publisher / Repository:
ASM
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
12
Issue:
6
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruby, Edward G. (Ed.)
    ABSTRACT A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacteriumPseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm,Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCEMarine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such asEscherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marinePseudoalteromonasbacterium to study their association with its host animalHydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations. 
    more » « less
  2. Duckweed (Lemnaceae) rises as a crucial model system due to its unique characteristics and wide-ranging utility. The significance of physiological research and phytoremediation highlights the intricate potential of duckweed in the current era of plant biology. Special attention to duckweed has been brought due to its distinctive features of nutrient uptake, ion transport dynamics, detoxification, intricate signaling, and stress tolerance. In addition, duckweed can alleviate environmental pollutants and enhance sustainability by participating in bioremediation processes and wastewater treatment. Furthermore, insights into the genomic complexity of Lemnaceae species and the flourishing field of transgenic development highlight the opportunities for genetic manipulation and biotechnological innovations. Novel methods for the germplasm conservation of duckweed can be adopted to preserve genetic diversity for future research endeavors and breeding programs. This review centers around prospects in duckweed research promoting interdisciplinary collaborations and technological advancements to drive its full potential as a model organism. 
    more » « less
  3. Newton, Hayley (Ed.)
    Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects. The pathogenVibrio vulnificus, a naturally occurring aquatic bacterium that causes fulminant septicemia, represents a quintessential climate-sensitive organism. In this review, we useV.vulnificusas a model organism to elucidate the intricate network of interactions between climatic factors and pathogens, with the objective of identifying common patterns by which climate change is affecting their disease burden. Recent findings indicate that in regions native toV.vulnificusor related pathogens, climate-driven natural disasters are the chief contributors to their disease outbreaks. Concurrently, climate change is increasing the environmental suitability of areas non-endemic to their diseases, promoting a surge in their natural populations and transmission dynamics, thus elevating the risk of new outbreaks. We highlight potential risk factors and climatic drivers aggravating the threat ofV.vulnificustransmission under both scenarios and propose potential measures for mitigating its impact. By defining the mechanisms by which climate change influencesV.vulnificusdisease burden, we aim to shed light on the transmission dynamics of related disease-causing agents, thereby laying the groundwork for early warning systems and broadly applicable control measures. 
    more » « less
  4. Reisch, Christopher R (Ed.)
    Bacillus subtilis is a widely studied Gram-positive bacterium that serves as an important model for understanding processes critical for several areas of biology including biotechnology and human health. B. subtilis has several advantages as a model organism: it is easily grown under laboratory conditions, it has a rapid doubling time, it is relatively inexpensive to maintain, and it is nonpathogenic. Over the last 50 years, advancements in genetic engineering have continued to make B. subtilis a genetic workhorse in scientific discovery. In this chapter, we describe methods for traditional gene disruptions, use of gene deletion libraries from the Bacillus Genetic Stock Center, allelic exchange, CRISPRi, and CRISPR/Cas9. Additionally, we provide general materials and equipment needed, strengths and limitations, time considerations, and troubleshooting notes to perform each method. Use of the methods outlined in this chapter will allow researchers to create gene insertions, deletions, substitutions, and RNA interference strains through a variety of methods custom to each application. 
    more » « less
  5. Mitchell, Aaron P. (Ed.)
    ABSTRACT The World Health Organization recently published the first list of priority fungal pathogens highlighting multipleCandidaspecies, includingCandida glabrata,Candida albicans, andCandida auris. However, prior studies in these pathogens have been mainly limited to the use of two drug resistance cassettes,NatMXandHphMX, limiting genetic manipulation capabilities in prototrophic laboratory strains and clinical isolates. In this study, we expanded the toolkit forC. glabrata,C. auris, andC. albicansto includeKanMXandBleMXwhen coupled with anin vitroassembled CRISPR-Cas9 ribonucleoprotein (RNP)-based system. Repurposing these drug resistance cassettes forCandida, we were able to make single gene deletions, sequential and simultaneous double gene deletions, epitope tags, and rescue constructs. We applied these drug resistance cassettes to interrogate the ergosterol pathway, a critical pathway for both the azole and polyene antifungal drug classes. Using our approach, we determined for the first time that the deletion ofERG3inC. glabrata,C. auris,andC. albicansprototrophic strains results in azole drug resistance, which further supports the conservation of the Erg3-dependent toxic sterol model. Furthermore, we show that anERG5deletion inC. glabratais azole susceptible at subinhibitory concentrations, suggesting that Erg5 could act as an azole buffer for Erg11. Finally, we identified a synthetic growth defect when bothERG3andERG5are deleted inC. glabrata,which suggests the possibility of another toxic sterol impacting growth. Overall, we have expanded the genetic tools available to interrogate complex pathways in prototrophic strains and clinical isolates. IMPORTANCEThe increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies inCandida glabrata,Candida auris, andCandida albicanshave been mainly limited to the use ofNatMX/SAT1andHphMX/CaHygfor genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated thatNatMX/SAT1, HphMX, KanMX,and/orBleMXdrug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway ofC. glabrata,C. auris, andC. albicans. Moreover, the utility of these tools has provided new insights intoERGgenes and their relationship to azole resistance inCandida. Overall, we have expanded the toolkit forCandidapathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis. 
    more » « less