Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.
more »
« less
Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials
There is a rising need for rapid and reliable analytical methods for separating microorganisms in clinical and biomedical applications. Microscale-insulator-based electrokinetic (iEK) systems have proven to be robust platforms for assessing a wide variety of microorganisms. Traditionally, iEK systems are usually stimulated with direct-current (DC) potentials. This work presents a comparison between using DC potentials and using DC-biased alternating-current (AC) potentials in iEK systems for the separation of microorganisms. The present study, which includes mathematical modeling and experimentation, compares the separation of bacterial and yeast cells in two distinct modes by using DC and DC-biased AC potentials. The quality of both separations, assessed in terms of separation resolution (Rs), showed a complete separation (Rs = 1.51) with the application of a DC-biased low-frequency AC signal but an incomplete separation (Rs = 0.55) with the application of an RMS-equivalent DC signal. Good reproducibility between experimental repetitions (<10%) was obtained, and good agreement (~18% deviation) was observed between modeling and experimental retention times. The present study demonstrates the potential of extending the limits of iEK systems by employing DC-biased AC potentials to perform discriminatory separations of microorganisms that are difficult to separate with the application of DC potentials.
more »
« less
- Award ID(s):
- 2127592
- PAR ID:
- 10528798
- Publisher / Repository:
- Multidisciplinary Digital Publishing Institute
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 2239
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Presented here is the first continuous separation of microparticles and cells of similar characteristics employing linear and nonlinear electrokinetic phenomena in an insulator-based electrokinetic (iEK) system. By utilizing devices with insulating features, which distort the electric field distribution, it is possible to combine linear and nonlinear EK phenomena, resulting in highly effective separation schemes that leverage the new advancements in nonlinear electrophoresis. This work combines mathematical modeling and experimentation to separate four distinct binary mixtures of particles and cells. A computational model with COMSOL Multiphysics was used to predict the retention times (tR,p) of the particles and cells in iEK devices. Then, the experimental separations were carried out using the conditions identified with the model, where the experimental retention time (tR,e) of the particles and cells was measured. A total of four distinct separations of binary mixtures were performed by increasing the level of difficulty. For the first separation, two types of polystyrene microparticles, selected to mimic Escherichia coli and Saccharomyces cerevisiae cells, were separated. By leveraging the knowledge gathered from the first separation, a mixture of cells of distinct domains and significant size differences, E. coli and S. cerevisiae, was successfully separated. The third separation also featured cells of different domains but closer in size: Bacillus cereus versus S. cerevisiae. The last separation included cells in the same domain and genus, B. cereus versus Bacillus subtilis. Separation results were evaluated in terms of number of plates (N) and separation resolution (Rs), where Rs values for all separations were above 1.5, illustrating complete separations. Experimental results were in agreement with modeling results in terms of retention times, with deviations in the 6–27% range, while the variation between repetitions was between 2 and 18%, demonstrating good reproducibility. This report is the first prediction of the retention time of cells in iEK systems.more » « less
-
null (Ed.)The manner of sample injection is critical in microscale electrokinetic (EK) separations, as the resolution of a separation greatly depends on sample quality and how the sample is introduced into the system. There is a significant wealth of knowledge on the development of EK injection methodologies that range from simple and straightforward approaches to sophisticated schemes. The present study focused on the development of optimized EK sample injection schemes for direct current insulator-based EK (DC-iEK) systems. These are microchannels that contain arrays of insulating structures; the presence of these structures creates a nonuniform electric field distribution when a potential is applied, resulting in enhanced nonlinear EK effects. Recently, it was reported that the nonlinear EK effect of electrophoresis of the second kind plays a major role in particle migration in DC-iEK systems. This study presents a methodology for designing EK sample injection schemes that consider the nonlinear EK effects exerted on the particles being injected. Mathematical modeling with COMSOL Multiphysics was employed to identify proper voltages to be used during the EK injection process. Then, a T-microchannel with insulating posts was employed to experimentally perform EK injection and separate a sample containing two types of similar polystyrene particles. The quality of the EK injections was assessed by comparing the resolution (Rs) and number of plates (N) of the experimental particle separations. The findings of this study establish the importance of considering nonlinear EK effects when planning for successful EK injection schemes.more » « less
-
Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor—the fold-increase in electric field magnitude due to the presence of an insulator constriction—and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 μm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.more » « less
-
Unfolder-based quasi-single-stage ac-dc power converter has been widely used for high-power electric vehicle (EV) charging systems for its high efficiency and power density. However, the resonance between the grid inductance (impedance) and the capacitors on the soft-dc-link of the converter impacts the system stability and significantly limits the system control bandwidth and dynamic response performance. A quasi-single-stage ac-dc converter with unfolder plus T-bridge series resonant converter (T-SRC) is studied in this work. The small-signal modeling and plant transfer function derivation of the T-SRC is presented in this paper. A damping filter design using the extra element theorem (EET) is then proposed to achieve high- bandwidth and stable operation of the quasi-single-stage ac-dc converter. Simulation and hardware results from an 18 kW module for high-power EV charging are provided to validate the proposed modeling and damping filter design.more » « less
An official website of the United States government

