skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Direct Laser-Functionalized Au-LIG Sensors for Real-time Electrochemical Monitoring of Response of Pseudomonas aeruginosa Biofilms to Antibiotics
Pseudomonas aeruginosa(P. aeruginosa) is a phenazine-producing pathogen recognized for its biofilm-mediated antibiotic resistance, showing up to 1000 times higher resistance compared to planktonic cells. In particular, it is shown that a phenazine called pyocyanin promotes antibiotic tolerance inP. aeruginosacultures by upregulating efflux pumps and inducing biofilm formation. Therefore, real-time study of phenazine production in response to antibiotics could offer new insights for early detection and management of the infection. Toward this goal, this work demonstrates real-time monitoring ofP. aeruginosacolony biofilms challenged by antibiotics using electrochemical sensors based on direct laser functionalization of laser induced graphene (LIG) with gold (Au) nanostructures. Specifically, two routes for functionalization of the LIG electrodes with Au-containing solutions are studied: electroless deposition and direct laser functionalization (E-Au/LIG and L-Au/LIG, respectively). While both methods show comparable sensitivity (1.276 vs 1.205μAμM−1), E-Au/LIG has bactericidal effects which make it unsuitable as a sensor material. The effect of antibiotics (gentamicin as a model drug) on the production rate of phenazines before (i.e., in planktonic phase) or after biofilm formation is studied. The sensor data confirms that theP. aeruginosabiofilms are at least 100 times more tolerant to the antibiotic compared to planktonic cells. The biosensors are developed using a scalable and facile manufacturing approach and may pave the way toward simple-to-use antibiotic susceptibility testing devices for early infection diagnosis and real-time study of antibiotic resistance evolution.  more » « less
Award ID(s):
2113864 2113873
PAR ID:
10528844
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
ECS Sensors Plus
Volume:
2
Issue:
4
ISSN:
2754-2726
Page Range / eLocation ID:
041601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhou, Ning-Yi (Ed.)
    ABSTRACT Pseudomonas aeruginosais considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment,P. aeruginosaundergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment forP. aeruginosainfection. Previously, we demonstrated polysaccharide lyase Smlt1473 fromStenotrophomonas maltophiliastrain k279a can catalyze the degradation of multiple polyuronidesin vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent ofP. aeruginosaalginate, suggesting that Smlt1473 could have potential application against multidrug-resistantP. aeruginosaand perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate fromP. aeruginosa. Additionally, we show that testedP. aeruginosastrains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degradeP. aeruginosaalginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCEPseudomonas aeruginosais a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronicP. aeruginosainfection. As a result, colonization withP. aeruginosais the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen forP. aeruginosainfection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoidP. aeruginosaclinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producingP. aeruginosa, as well as have the potential to reduceP. aeruginosaEPS in non-clinical settings. 
    more » « less
  2. ABSTRACT Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions. IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells. 
    more » « less
  3. null (Ed.)
    Abstract Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivate Pseudomonas aeruginosa , a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilm P. aeruginosa by long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM. 
    more » « less
  4. A model for antibiotic accumulation in bacterial biofilm microcolonies utilizing heterogenous porosity and attachment site profiles replicated the periphery sequestration reported in prior experimental studies onPseudomonas aeruginosa PAO1biofilm cell clusters. TheseP. aeruginosacell clusters are in vitro models of the chronicP. aeruginosainfections in cystic fibrosis patients which display recalcitrance to antibiotic treatments, leading to exacerbated morbidity and mortality. This resistance has been partially attributed to periphery sequestration, where antibiotics fail to penetrate biofilm cell clusters. The physical phenomena driving this periphery sequestration have not been definitively established. This paper introduces mathematical models to account for two proposed physical phenomena driving periphery sequestration: biofilm matrix attachment and volume-exclusion due to variable biofilm porosity. An antibiotic accumulation model which incorporated these phenomena better fit observed periphery sequestration data compared to previous models. 
    more » « less
  5. Bondy-Denomy, Joseph (Ed.)
    ABSTRACT Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogenPseudomonas aeruginosa. This network has also been associated with regulating many virulence factorsP. aeruginosasecretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion ofnahKleads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of allP. aeruginosaquorum-sensing (QS) systems, with a large upregulation of thePseudomonasquinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system,las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCEPseudomonas aeruginosais a Gram-negative bacterium that establishes biofilms as part of its pathogenicity.P. aeruginosainfections are associated with nosocomial infections. As the prevalence of multi-drug-resistantP. aeruginosaincreases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases inP. aeruginosaimplicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in theP. aeruginosalifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence. 
    more » « less