skip to main content


Title: Movement behavior in a dominant ungulate underlies successful adjustment to a rapidly changing landscape following megafire
Abstract Background

Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. Anthropogenic climate and land use change have accelerated the frequency of some of these extreme disturbances, including megafire. These megafires dramatically alter ecosystems and challenge the capacity of several species to adjust to a rapidly changing landscape. Ungulates and their movement behaviors play a central role in the ecosystem functions of fire-prone ecosystems around the world. Previous work has shown behavioral plasticity is an important mechanism underlying whether large ungulates are able to adjust to recent changes in their environments effectively. Ungulates may respond to the immediate effects of megafire by adjusting their movement and behavior, but how these responses persist or change over time following disturbance is poorly understood.

Methods

We examined how an ecologically dominant ungulate with strong site fidelity, Columbian black-tailed deer (Odocoileus hemionus columbianus), adjusted its movement and behavior in response to an altered landscape following a megafire. To do so, we collected GPS data from 21 individual female deer over the course of a year to compare changes in home range size over time and used resource selection functions (RSFs) and hidden Markov movement models (HMMs) to assess changes in behavior and habitat selection.

Results

We found compelling evidence of adaptive capacity across individual deer in response to megafire. Deer avoided exposed and severely burned areas that lack forage and could be riskier for predation immediately following megafire, but they later altered these behaviors to select areas that burned at higher severities, potentially to take advantage of enhanced forage.

Conclusions

These results suggest that despite their high site fidelity, deer can navigate altered landscapes to track rapid shifts in encounter risk with predators and resource availability. This successful adjustment of movement and behavior following extreme disturbance could help facilitate resilience at broader ecological scales.

 
more » « less
NSF-PAR ID:
10528949
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Movement Ecology
Volume:
12
Issue:
1
ISSN:
2051-3933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts,USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.

     
    more » « less
  2. Abstract Background

    Animal movement is a key ecological process that is tightly coupled to local environmental conditions. While agriculture, urbanisation, and transportation infrastructure are critical to human socio-economic improvement, these have spurred substantial changes in animal movement across the globe with potential impacts on fitness and survival. Notably, however, human disturbance can have differential effects across species, and responses to human activities are thus largely taxa and context specific. As human disturbance is only expected to worsen over the next decade it is critical to better understand how species respond to human disturbance in order to develop effective, case-specific conservation strategies.

    Methods

    Here, we use an extensive telemetry dataset collected over 22 years to fill a critical knowledge gap in the movement ecology of lowland tapirs (Tapirus terrestris) across areas of varying human disturbance within three biomes in southern Brazil: the Pantanal, Cerrado, and Atlantic Forest.

    Results

    From these data we found that the mean home range size across all monitored tapirs was 8.31 km2(95% CI 6.53–10.42), with no evidence that home range sizes differed between sexes nor age groups. Interestingly, although the Atlantic Forest, Cerrado, and Pantanal vary substantially in habitat composition, levels of human disturbance, and tapir population densities, we found that lowland tapir movement behaviour and space use were consistent across all three biomes. Human disturbance also had no detectable effect on lowland tapir movement. Lowland tapirs living in the most altered habitats we monitored exhibited movement behaviour that was comparable to that of tapirs living in a near pristine environment.

    Conclusions

    Contrary to our expectations, although we observed individual variability in lowland tapir space use and movement, human impacts on the landscape also had no measurable effect on their movement. Lowland tapir movement behaviour thus appears to exhibit very little phenotypic plasticity in response to human disturbance. Crucially, the lack of any detectable response to anthropogenic disturbance suggests that human modified habitats risk being ecological traps for tapirs and this information should be factored into conservation actions and species management aimed towards protecting lowland tapir populations.

     
    more » « less
  3. Abstract Aim

    Climate warming is expected to drive upward and poleward shifts at the leading edge of tree species ranges. Disturbance has the potential to accelerate these shifts by altering biotic and abiotic conditions, though this potential is likely to vary by disturbance type. In this study, we assessed whether recent wildfires and spruce beetle outbreaks promoted upward range expansion of trembling aspen.

    Location

    The San Juan Mountains of southern Colorado, USA (37°34′–37°50′N, 106°49′–107°21′W).

    Taxon

    Populus tremuloides.

    Methods

    We used aerial imagery to determine the upper elevational limit of adult aspen and conducted seedling surveys at and above this upper limit in burned and unburned areas, which had already incurred high canopy mortality due to spruce bark beetle (Dendroctonus rufipennis) outbreaks. We compared characteristics of burned versus unburned bark beetle‐killed sites and assessed microsite conditions related to aspen seedling establishment using generalized linear models and interaction indices.

    Results

    Aspen seedling establishment occurred upslope of its previous range within burns, but not in unburned areas, despite severe beetle‐driven canopy mortality across all sites before the fire. Aspen seedling establishment was associated more with the light and mineral soil created by fire than the presence of nearby seed sources. Aspen seedlings were associated with nurse objects such as logs and rocks at the highest elevations, where these objects may ameliorate a range of stressors associated with the high elevation range boundary.

    Main conclusions

    Not all disturbance types are equal in promoting tree species migrations at the leading edge. Range shifts can be highly localized, and microsites are important for driving local range expansions in transitional environments. The mosaic of future disturbances across the landscape will drive forest compositional shifts, depending on the disturbance types and the species they promote.

     
    more » « less
  4. Abstract

    Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations ofn = 163 mule deer that moved 15–288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4–2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.

     
    more » « less
  5. Abstract Aim

    Wildfire is an essential disturbance agent that creates burn mosaics, or a patchwork of burned and unburned areas across the landscape. Unburned patches, fire refugia, serve as carbon sinks and seed sources for forest regeneration in burned areas. In the Cajander larch (Larix cajanderiMayr.) forests of north‐eastern Siberia, an unprecedented wildfire season in 2020 and little documentation of landscape patch dynamics have resulted in research gaps about the characteristics of fire refugia in northern latitude forests, which are warming faster than other global forest ecosystems. We aim to characterize the 2010 distribution of fire refugia for these forest ecosystems and evaluate their topographic drivers.

    Location

    North‐eastern Siberia across the North‐east Siberian Taiga and the Cherskii‐Kolyma Mountain Tundra ecozones.

    Time period

    2001–2020.

    Major taxa studied

    Cajander larch.

    Methods

    We used Landsat imagery to define burned and unburned patches, and the Arctic digital elevation model to calculate topographic variables. We characterized the size and density of fire refugia. We sampled individual pixels (n = 80,000) from an image stack that included a binary burned/unburned, elevation, slope, aspect, topographic position index, ruggedness, and tree cover from 2001 to 2020. We evaluated the topographic drivers of fire refugia with boosted regression trees.

    Results

    We found no substantial difference in fire refugia size and density across the region. The fire refugia size averaged 7.2 ha (0.09–150,439 ha). The majority of interior burned patches exceed the potential wind dispersal distance from fire refugia. Topographic position index and terrain steepness were important predictors of fire refugia.

    Main conclusions

    Unprecedented wildfires in 2020 did not impact fire refugia formation. Fire refugia are strongly controlled by topographic positions such as uplands and lowlands that influence microsite hydrological conditions. Fire refugia contribute to postfire landscape heterogeneity that preserves ecosystem functions, seed sources, habitat, and carbon sinks.

     
    more » « less