skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HDXBoxeR: An R package for statistical analysis and visualization of multiple Hydrogen-Deuterium Exchange Mass-Spectrometry datasets of different protein states
Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful protein characterization technique that provides insights into protein dynamics and flexibility at the peptide level. However, analyzing HDX-MS data presents a significant challenge due to the wealth of information it generates. Each experiment produces data for hundreds of peptides, often measured in triplicate across multiple time points. Comparisons between different protein states create distinct datasets containing thousands of peptides that require matching, rigorous statistical evaluation, and visualization. Our open-source R package, HDXBoxeR, is a comprehensive tool designed to facilitate statistical analysis and comparison of multiple sets among samples and time points for different protein states, along with data visualization.  more » « less
Award ID(s):
2304707
PAR ID:
10528993
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Elofsson, Arne
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4811
Subject(s) / Keyword(s):
HDX-MS robot plots analysis deuterium structural analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An inherent strength of hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) is its ability to detect the presence of multiple conformational states of a protein, which often manifest as multimodal isotopic envelopes. However, the statistical considerations for accurate analysis of multimodal spectra have yet to be established. Here we outline an unrestrained binomial distribution fitting approach with the corresponding statistical tests to accurately detect and, when possible, deconvolute isotopic distributions that contain multiple subpopulations. The algorithms have been incorporated into an updated version of the freely available software, HX-Express, and validated using known mixtures of peptides deuterated to varying degrees. This approach presents a readily accessible tool to fit and interpret bimodal and trimodal behavior in HDX-MS data for mixed populations, EX1 kinetics, and pulse labeling data. 
    more » « less
  2. Carbohydrates are critical for cellular functions as well as an important class of metabolites. Characterizing carbohydrate structures is a difficult analytical challenge due to the presence of isomers. In-electrospray – hydrogen/deuterium exchange – mass spectrometry (in-ESI HDX-MS) is a method of HDX that samples the solvated structure of carbohydrates during the ESI process and requires little to no instrument modification. Traditionally, solution-phase HDX is utilized with proteins to sample conformational differences, and pH is a critical parameter to monitor and control due to the presence of both acid- and base-catalyzed mechanisms of exchange. For In-ESI HDX, the pH surrounding the analyte changes before and during labeling, which has the potential to affect the rate of labeling for analytes. Herein, we alter the pH of spray solutions containing model carbohydrates and peptides, perform in-ESI HDX-MS, and characterize the deuterium-uptake trends. Varying pH results in altered D uptake, though the overall trends differ from the expected bulk-solution trends due to the electrospray process. These findings show the utility of varying pH prior to in-ESI HDX-MS for establishing different extents of HDX as well as distinguishing labile functional groups that are present in different analytes. 
    more » « less
  3. Carbohydrates and glycans are integral to many biological processes, including cell-cell recognition and energy storage. However, carbohydrates are often difficult to analyze due to the high degree of isomerism present. One method being developed to distinguish these isomeric species is hydrogen/deuterium exchange-mass spectrometry (HDX-MS). In HDX-MS, carbohydrates are exposed to a deuterated reagent and the functional groups with labile hydrogen atoms, including hydroxyls and amides, exchange with the 1 amu heavier isotope, deuterium. These labels can then be detected by MS, which monitors the mass increase with the addition of D-labels. The observed rate of exchange is dependent on the exchanging functional group, the accessibility of the exchanging functional group, and the presence of hydrogen bonds. Herein, we discuss how HDX has been applied in the solution-phase, gas-phase, and during MS ionization to label carbohydrates and glycans. Additionally, we compare differences in the conformations that are labeled, the labeling timeframes, and applications of each of these methods. Finally, we comment on future opportunities for development and use of HDX-MS to analyze glycans and glycoconjugates. 
    more » « less
  4. Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information of biomolecules. Ion/ion reactions are competitive reactions where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene – the primary, commercially available anion reagent – interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT – also described as HDX - mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogenous biomolecules, such as carbohydrates. 
    more » « less
  5. null (Ed.)
    Digestion of proteins separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) remains a popular method for protein identification using mass-spectrometry based proteomics. Although robust and routine, the in-gel digestion procedure is laborious and time-consuming. Electroblotting to a capture membrane prior to digestion reduces preparation steps but requires on-membrane digestion that yields fewer peptides than in-gel digestion. This paper develops direct electroblotting through a trypsin-containing membrane to a capture membrane to simplify extraction and digestion of proteins separated by SDS-PAGE. Subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) identifies the extracted peptides. Analysis of peptides from different capture membrane pieces shows that electrodigestion does not greatly disturb the spatial resolution of a standard protein mixture separated by SDS-PAGE. Electrodigestion of an Escherichia coli ( E. coli ) cell lysate requires four hours of total sample preparation and results in only 13% fewer protein identifications than in-gel digestion, which can take 24 h. Compared to simple electroblotting and protein digestion on a poly(vinylidene difluoride) (PVDF) capture membrane, adding a trypsin membrane to the electroblot increases the number of protein identifications by 22%. Additionally, electrodigestion experiments using capture membranes coated with polyelectrolyte layers identify a higher fraction of small proteolytic peptides than capture on PVDF or in-gel digestion. 
    more » « less