skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth and evolution of Neoarchean−Paleoproterozoic crust in the NW Wyoming Province: Evidence from zircon U-Pb age and Lu-Hf isotopes of the Montana metasedimentary terrane
The Montana metasedimentary terrane in the northern Wyoming Province provides valuable insight into crustal formation and reworking processes along the cratonic margin and offers a unique opportunity to decipher the complex Neoarchean−Paleoproterozoic terrane assembly in southwestern Laurentia. We report new zircon U-Pb dates and Hf isotopes from seven metaigneous samples in the northwestern Montana metasedimentary terrane. The internal textures of zircon in this study are complex; some lack inherited cores and metamorphic overgrowths, while others exhibit core-rim relationships. Based on the cathodoluminescence (CL) features, we interpret these grains to be magmatic populations. These data demonstrate discrete igneous pulses at 2.7 Ga, 2.4 Ga, and 1.7 Ga, which indicate significant crustal formation intervals in the Montana metasedimentary terrane. Zircons at 2.7 Ga have positive εHf values (+2.4 to +0.9) that indicate a depleted mantle source. Most 2.4 Ga and 1.7 Ga samples have negative εHf values (−1.6 to −15.5), which indicate significant contributions from preexisting crust. Two 1.7 Ga samples, however, have near-chondritic εHf values (+0.4 to +0.3) that indicate larger juvenile contributions. The time-integrated Hf isotope trend suggests that the Paleoproterozoic zircons were produced from a mixture of older crust and juvenile mantle inputs. Additionally, the isotopic age fingerprint of the Montana metasedimentary terrane suggests that it differs from northern-bounding terranes. Viewed more broadly, the 2.7 Ga and 1.7 Ga age peaks that the Montana metasedimentary terrane shares with the global zircon age spectrum suggest that the drivers of these events in the Montana metasedimentary terrane were common throughout the Earth and may be associated with the assembly of supercontinents Kenorland and Nuna.  more » « less
Award ID(s):
1854390 1854432
PAR ID:
10529389
Author(s) / Creator(s):
; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Precambrian terrains preserving rocks older than 3.5 Ga contain an essential record of the crustal evolution of the primitive Earth. In this study, we investigated Eo-Paleoarchean rocks from the northern S˜ao Francisco Craton (NSFC) and the Borborema Province in northeastern Brazil to contribute to a more complete global isotopic record of this pivotal time in Earth’s history. Zircon U-Pb ages along with zircon Hf isotope compositions were obtained for migmatitic gneiss complexes in both terrains. Zircon U-Pb data from the NSFC yield well-defined populations with 207Pb/206Pb ages from 3.61 to 3.59 Ga and younger components at ~3.5 and ~3.4 Ga. Similarly, the Borborema Province gneiss yields a main zircon age population of 3.58 Ga and a younger ~3.5 Ga age component. The ~3.6 Ga zircon components yield consistently sub-chondritic Hf isotopic compositions with initial εHf between −1.9 and −3.1 for the NSFC and of εHf −0.5 for the Borborema Province. Gneisses from northeastern Brazil record a main crust forming period at 3.65–3.60 Ga with sub-chondritic Hf isotope compositions that indicate derivation from melting of a ~3.8 Ga source of broadly chondritic isotope composition, similar to that of many Eo-Paleoarchean gneisses worldwide. This Hf isotope record supports the existence of broadly chondritic mantle reservoir in the Eoarchean with development of depleted mantle and the appearance of evolved crust later in the Paleoarchean. 
    more » « less
  2. NA (Ed.)
    Precambrian terrains preserving rocks older than 3.5 Ga contain an essential record of the crustal evolution of the primitive Earth. In this study, we investigated Eo-Paleoarchean rocks from the northern S˜ao Francisco Craton (NSFC) and the Borborema Province in northeastern Brazil to contribute to a more complete global isotopic record of this pivotal time in Earth’s history. Zircon U-Pb ages along with zircon Hf isotope compositions were obtained for migmatitic gneiss complexes in both terrains. Zircon U-Pb data from the NSFC yield well-defined populations with 207Pb/206Pb ages from 3.61 to 3.59 Ga and younger components at ~3.5 and ~3.4 Ga. Similarly, the Borborema Province gneiss yields a main zircon age population of 3.58 Ga and a younger ~3.5 Ga age component. The ~3.6 Ga zircon components yield consistently sub-chondritic Hf isotopic compositions with initial εHf between −1.9 and −3.1 for the NSFC and of εHf −0.5 for the Borborema Province. Gneisses from northeastern Brazil record a main crust forming period at 3.65–3.60 Ga with sub-chondritic Hf isotope compositions that indicate derivation from melting of a ~3.8 Ga source of broadly chondritic isotope composition, similar to that of many Eo-Paleoarchean gneisses worldwide. This Hf isotope record supports the existence of broadly chondritic mantle reservoir in the Eoarchean with development of depleted mantle and the appearance of evolved crust later in the Paleoarchean. 
    more » « less
  3. Abstract Granitic batholiths of the ∼500 Ma Ross Orogen in Antarctica are voluminous in scale, reflecting prolific magmatism along the active early Paleozoic convergent margin of Gondwana. New age and isotopic analysis of zircons from a large suite of Ross granitoids spanning >2,000 km along the orogen provide a wealth of geochronologic, tracer, and inheritance information, enabling us to investigate the pace of magmatism, along‐strike temporal and geochemical trends, magmatic sources, and tectonic modes of convergence. Because granitoids penetrate the crust of the earlier Neoproterozoic rift margin, they also provide insight into the age and composition of the largely ice‐covered East Antarctic craton. Zircon U‐Pb ages from these and other samples indicate that active Ross magmatism spanned 475–590 Ma, much longer than generally regarded. Most samples have heavy zircon δ18O values between 6.5 and 11.5‰ and initial εHfcompositions between 0 and −15; their isotopic co‐variations are independent of age, as in other contemporary continental arcs, and reflect largely crustal melt sources. Samples near Shackleton Glacier have distinctly more mantle‐like isotope composition (i.e., radiogenic εHfand low δ18O) and separate two regions with distinctive isotopic properties and inheritance patterns—a more juvenile section of Mesoproterozoic crust underlying the southern TAM and an older, more evolved region of Paleoproterozoic and Archean crust in the central TAM. The isotopic discontinuity separating these regions indicates the presence of a cryptic crustal boundary of Grenvillian or younger age within the East Antarctic shield that may be traceable into the western Laurentian part of the Rodinia supercontinent. 
    more » « less
  4. null (Ed.)
    Abstract The spatial and temporal distribution of arc magmatism and associated isotopic variations provide insights into the Phanerozoic history of the western margin of South America during major shifts in Andean and pre-Andean plate interactions. We integrated detrital zircon U-Th-Pb and Hf isotopic results across continental magmatic arc systems of Chile and western Argentina (28°S–33°S) with igneous bedrock geochronologic and zircon Hf isotope results to define isotopic signatures linked to changes in continental margin processes. Key tectonic phases included: Paleozoic terrane accretion and Carboniferous subduction initiation during Gondwanide orogenesis, Permian–Triassic extensional collapse, Jurassic–Paleogene continental arc magmatism, and Neogene flat slab subduction during Andean shortening. The ~550 m.y. record of magmatic activity records spatial trends in magma composition associated with terrane boundaries. East of 69°W, radiogenic isotopic signatures indicate reworked continental lithosphere with enriched (evolved) εHf values and low (<0.65) zircon Th/U ratios during phases of early Paleozoic and Miocene shortening and lithospheric thickening. In contrast, the magmatic record west of 69°W displays depleted (juvenile) εHf values and high (>0.7) zircon Th/U values consistent with increased asthenospheric contributions during lithospheric thinning. Spatial constraints on Mesozoic to Cenozoic arc width provide a rough approximation of relative subduction angle, such that an increase in arc width reflects shallower slab dip. Comparisons among slab dip calculations with time-averaged εHf and Th/U zircon results exhibit a clear trend of decreasing (enriched) magma compositions with increasing arc width and decreasing slab dip. Collectively, these data sets demonstrate the influence of subduction angle on the position of upper-plate magmatism (including inboard arc advance and outboard arc retreat), changes in isotopic signatures, and overall composition of crustal and mantle material along the western edge of South America. 
    more » « less
  5. Abstract The northern Sierra Nevada batholith was emplaced into and across a series of accreted crustal belts that vary considerably in their ages and lithologies. Unlike batholithic segments to the south, the northern Sierra comprises smaller, spatially distinct plutons where geologic relations with the host basement can be observed. Intermediate to felsic plutons were sampled as arc‐perpendicular transects at the latitude of Lake Tahoe and zircon Lu‐Hf and trace element analysis was performed in order to assess the relative impacts of temporal and spatial variability of arc magmatism on zircon geochemistry. Trends through time in the Hf data are complex, whereas there is an abrupt step from juvenile values in plutons intruding western belts (+12.3 to +14.4) to more evolved values in those intruding the Northern Sierra terrane to the east (−0.6 to +5.2). A similar pattern is observed in several zircon trace element signatures, including pronounced steps toward higher U/Yb, Dy/Yb and Ce/Y from the western belts into the Northern Sierra terrane to the east. The step is approximately coincident with the Feather River terrane, which is interpreted to mark the suture between the oceanic lithosphere to the west and the North American continental lithosphere to the east. The observed links between variation in zircon Lu‐Hf and trace element concentration and basement domain indicate that northern Sierran zircons incorporate, and are sensitive to, the crustal tracts into which they are emplaced. Preliminary application of our results to provenance analysis of Great Valley strata indicates changing provenance through time in the adjacent forearc. 
    more » « less