Combining the visibilities measured by an interferometer to form a cosmological power spectrum is a complicated process. In a delay-based analysis, the mapping between instrumental and cosmological space is not a one-to-one relation. Instead, neighbouring modes contribute to the power measured at one point, with their respective contributions encoded in the window functions. To better understand the power measured by an interferometer, we assess the impact of instrument characteristics and analysis choices on these window functions. Focusing on the Hydrogen Epoch of Reionization Array (HERA) as a case study, we find that long-baseline observations correspond to enhanced low-k tails of the window functions, which facilitate foreground leakage, whilst an informed choice of bandwidth and frequency taper can reduce said tails. With simple test cases and realistic simulations, we show that, apart from tracing mode mixing, the window functions help accurately reconstruct the power spectrum estimator of simulated visibilities. The window functions depend strongly on the beam chromaticity and less on its spatial structure – a Gaussian approximation, ignoring side lobes, is sufficient. Finally, we investigate the potential of asymmetric window functions, down-weighting the contribution of low-k power to avoid foreground leakage. The window functions presented here correspond to the latest HERA upper limits for the full Phase I data. They allow an accurate reconstruction of the power spectrum measured by the instrument and will be used in future analyses to confront theoretical models and data directly in cylindrical space.
The key to detecting neutral hydrogen during the epoch of reionization (EoR) is to separate the cosmological signal from the dominating foreground radiation. We developed direct optimal mapping (DOM) to map interferometric visibilities; it contains only linear operations, with full knowledge of point spread functions from visibilities to images. Here, we demonstrate a fast Fourier transform-based image power spectrum and its window functions computed from the DOM images. We use noiseless simulation, based on the Hydrogen Epoch of Reionization Array Phase I configuration, to study the image power spectrum properties. The window functions show <10−11of the integrated power leaks from the foreground-dominated region into the EoR window; the 2D and 1D power spectra also verify the separation between the foregrounds and the EoR.
more » « less- NSF-PAR ID:
- 10529450
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 971
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 16
- Size(s):
- Article No. 16
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
null (Ed.)ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchfork effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre.more » « less
-
ABSTRACT Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.
-
ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window.more » « less
-
Foregrounds with polarization states that are not smooth functions of frequency present a challenge to HI Epoch of Reionization (EoR) power spectrum measurements if they are not cleanly separated from the desired Stokes I signal. The intrinsic polarization impurity of an antenna's electromagnetic response limits the degree to which components of the polarization state on the sky can be separated from one another, leading to the possibility that this frequency structure could be confused for HI emission. We investigate the potential of Faraday rotation by the Earth's ionosphere to provide a mechanism for both mitigation of, and systematic tests for, this contamination. Specifically, we consider the delay power spectrum estimator, which relies on the expectation that foregrounds will be separated from the cosmological signal by a clearly demarcated boundary in Fourier space, and is being used by the Hydrogen Epoch of Reionization Array (HERA) experiment. Through simulations of visibility measurements which include the ionospheric Faraday rotation calculated from real historical ionospheric plasma density data, we find that the incoherent averaging of the polarization state over repeated observations of the sky may attenuate polarization leakage in the power spectrum by a factor of 10 or more. Additionally, this effect provides a way to test for the presence of polarized foreground contamination in the EoR power spectrum estimate.more » « less