skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Filtering Empty Video Frames for Efficient Real-Time Object Detection
Deep learning models have significantly improved object detection, which is essential for visual sensing. However, their increasing complexity results in higher latency and resource consumption, making real-time object detection challenging. In order to address the challenge, we propose a new lightweight filtering method called L-filter to predict empty video frames that include no object of interest (e.g., vehicles) with high accuracy via hybrid time series analysis. L-filter drops those frames deemed empty and conducts object detection for nonempty frames only, significantly enhancing the frame processing rate and scalability of real-time object detection. Our evaluation demonstrates that L-filter improves the frame processing rate by 31–47% for a single traffic video stream compared to three standalone state-of-the-art object detection models without L-filter. Additionally, L-filter significantly enhances scalability; it can process up to six concurrent video streams in one commodity GPU, supporting over 57 fps per stream, by working alongside the fastest object detection model among the three models.  more » « less
Award ID(s):
2326796 2007854
PAR ID:
10529574
Author(s) / Creator(s):
;
Publisher / Repository:
Sensors
Date Published:
Journal Name:
Sensors
Volume:
24
Issue:
10
ISSN:
1424-8220
Page Range / eLocation ID:
3025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-time object detection is essential for AI-based intelligent traffic management. However, growing complexities of deep learning models for object detection cause increased latency and resource requirements. To tackle the challenge, we introduce a new approach, named AROD (Adaptive Real-Time Object Detection), that infers the pixel motion speed in continuous traffic video frames and skips redundant frames when the pixel velocity is low. Thereby, AROD aims to significantly enhance the efficiency and scalability, sustaining the accuracy of object detection. Our evaluation using real-world traffic videos reveals that our method for pixel velocity inference via lightweight deep learning reduces the RMSE (Root Mean Square Error) by up to two orders of magnitude compared to state-of-the-art approaches. AROD improves the frame processing rate of YOLOv5, SSD, and EfficientDet by approximately 32-61\%, 110-174\%, and 120-213\%, respectively. AROD considerably enhances scalability by supporting real-time object detection for up to three concurrent traffic video streams on a commodity machine. Moreover, AROD demonstrates its generalizability by supporting competitive accuracy in object detection for a separate traffic video that was fully hidden during training. 
    more » « less
  2. Real-time object detection is essential for AI-based intelligent traffic management. However, growing complexities of deep learning models for object detection cause increased latency and resource requirements. To tackle the challenge, we introduce a new approach, named AROD (Adaptive Real-Time Object Detection), that infers the pixel motion speed in continuous traffic video frames and skips redundant frames when the pixel velocity is low. Thereby, AROD aims to significantly enhance the efficiency and scalability, sustaining the accuracy of object detection. Our evaluation using real-world traffic videos reveals that our method for pixel velocity inference via lightweight deep learning reduces the RMSE (Root Mean Square Error) by up to two orders of magnitude compared to state-of-the-art approaches. AROD improves the frame processing rate of YOLOv5, SSD, and EfficientDet by approximately 32-61%, 110-174%, and 120-213%, respectively. AROD considerably enhances scalability by supporting real-time object detection for up to three concurrent traffic video streams on a commodity machine. Moreover, AROD demonstrates its generalizability by supporting competitive accuracy in object detection for a separate traffic video that was fully hidden during training. 
    more » « less
  3. Deep learning models have significantly improved object detection essential for traffic monitoring. However, these models’ increasing complexity results in higher latency and resource consumption, making real-time object detection challenging. To address this issue, we propose a lightweight deep learning model called Empty Road Detection (ERD). ERD efficiently identifies and removes empty traffic images that do not contain any object of interest, such as vehicles, via binary classification. By serving as a preprocessing unit, ERD filters out nonessential data, reducing computational complexity and latency. ERD is highly compatible and can work seamlessly with any third-party object detection model. In our evaluation, we found that ERD improves the frame processing rate of EfficientDet, SSD, and YOLOV5 by approximately 44%, 40%, and 10%, respectively, for a real-world traffic monitoring video. 
    more » « less
  4. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras. 
    more » « less
  5. Traffic intersections are prime locations for deployment of infrastructure sensors and edge computing nodes to realize the vision of a smart city. It is expected that the needs of a smart city, in regards to traffic and pedestrian traffic systems monitored by cameras/video, can be met by using stateof-the-art artificial-intelligence (AI) based object detectors and trackers. A critical component in designing an effective real-time object detection/tracking pipeline is the understanding of how object density, i.e., the number of objects in a scene, and imageresolution and frame rate influence the performance metrics. This study explores the accuracy and speed metrics with the goal of supporting pipelines that meet the precision and latency needs of a real-time environment. We examine the impact of varying image-resolution, frame rate and object-density on the object detection performance metrics. The experiments on the COSMOS testbed dataset show that varying the frame width from 416 pixels to 832 pixels, and cropping the images to a square resolution, result in the increase in average precision for all object classes. Decreasing the frame rate from 15 fps to 5 fps preserves more than 90% of the highest F1 score achieved for all object classes. The results inform the choice of video preprocessing stages, modifications to established AI-based object detection/tracking methods, and suggest optimal hyper-parameter values. Index Terms—Object Detection, Smart City, Video Resolution, Deep Learning Models. 
    more » « less