skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta-function
Assuming the Riemann Hypothesis (RH), Montgomery proved a theorem concerning pair correlation of zeros of the Riemann zeta-function. One consequence of this theorem is that, assuming RH, at least 67.9% of the nontrivial zeros are simple. Here we obtain an unconditional form of Montgomery’s theorem and show how to apply it to prove the following result on simple zeros: If all the zeros ρ=β+iγ of the Riemann zeta-function such that T3/8<γ≤T satisfy ∣∣β−1/2∣∣<1/(2logT), then, as T tends to infinity, at least 61.7% of these zeros are simple. The method of proof neither requires nor provides any information on whether any of these zeros are or are not on the critical line where β=1/2. We also obtain the same result under the weaker assumption of a strong zero-density hypothesis.  more » « less
Award ID(s):
2239681
PAR ID:
10529598
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Institute of Mathematics Polish Academy of Sciences
Date Published:
Journal Name:
Acta Arithmetica
Volume:
214
ISSN:
0065-1036
Page Range / eLocation ID:
357 to 376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Alternative Hypothesis (AH) concerns a hypothetical and unlikely picture of how zeros of the Riemann zeta function are spaced, which one would like to rule out. In the Alternative Hypothesis, the renormalized distance between non-trivial zeros is supposed to always lie at a half integer. It is known that the Alternative Hypothesis is compatible with what is known about the pair correlation function of zeta zeros. We ask whether what is currently known about higher correlation functionsof the zeros is sufficient to rule out the Alternative Hypothesis and show by construction of an explicit counterexample point process that it is not. A similar result was recently independently obtained by Tao, using slightly different methods. We also apply the ergodic theorem to this point process to show there exists a deterministic collection of points lying in 1/2 Z, which satisfy the Alternative Hypothesis spacing, but mimic the local statistics that are currently known about zeros of the zeta function. 
    more » « less
  2. Abstract We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta‐function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For , our bounds for the ‐th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros. 
    more » « less
  3. Abstract Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non‐zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non‐universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000). 
    more » « less
  4. For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC} 
    more » « less
  5. Draganov, B; Ivanov, K; Nikolov, G; Uluchev, R (Ed.)
    nspired by a result of Soundararajan, assuming the Riemann hypothesis (RH), we prove a new inequality for the logarithm of the modulus of the Riemann zeta-function on the critical line in terms of a Dirichlet polynomial over primes and prime powers. Our proof uses the Guinand-Weil explicit formula in conjunction with extremal one-sided bandlimited approximations for the Poisson kernel. As an application, by carefully estimating the Dirichlet polynomial, we revisit a 100-year-old estimate of Littlewood and give a slight refinement of the sharpest known upper bound (due to Chandee and Soundararajan) for the modulus of the zeta function on the critical line assuming RH, by providing explicit lower-order terms. 
    more » « less