skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.  more » « less
Award ID(s):
2003837
PAR ID:
10529682
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biomolecules
Volume:
14
Issue:
5
ISSN:
2218-273X
Page Range / eLocation ID:
594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely‐packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding‐induced turbidity in solution, is explored using combinations of spectrophotometry, hard‐sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β‐crystallins emerged as a principal component in all mixtures that enabled dense fluid‐like packing and short‐range order necessary for transparency. These findings helped inform the design of lens‐like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency. 
    more » « less
  2. α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy. 
    more » « less
  3. βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. 
    more » « less
  4. Abstract We present a fundamental study that supports the feasibility of delaying the onset of presbyopia and age‐related cataracts via the utilization of surface‐functionalized poly(amidoamine) (PAMAM) dendrimers. These PAMAM derivatives are known to have the added benefit of permeating the human cornea with possible absorption/distribution into the crystalline lens, indicating the potential for use in a topically applied eye solution. Mature onset cataract formation occurs because of γ‐crystallin and β‐crystallin aggregation in the human lens over time. As the molecular chaperone α‐crystallin becomes saturated with unfolded γ‐crystallins, the ability to prevent aggregation becomes limited. PAMAM dendrimers containing either sodium carboxylate‐ or succinamic acid‐surface functionality are employed as synthetic chaperones to evaluate the effect of structure and local concentration on γ‐crystallin aggregation. The chaperone/γ‐crystallin blends are examined via DLS, zeta potential measurements, and fluorescence spectroscopy. DLS studies show a reduction in hydrodynamic size for γ‐crystallin in the presence of PAMAM dendrimers and their small molecule counterparts compared to the control. Structural identity and local concentration of functionality are found to impact solution behavior. Zeta potential measurements and fluorescence studies indicate that synthetic chaperones can have multiple modes of non‐covalent interactions and are the most effective in preventing or reducing γ‐crystallin aggregation. 
    more » « less
  5. Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, β-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the β-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized β-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl 2 or MgCl 2 ). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate β-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge—properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of β-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens. 
    more » « less