Despite rapid advances in quantum computing technologies, the qubit connectivity limitation remains to be a critical challenge. Both near-term NISQ quantum computers and relatively long-term scalable quantum architectures do not offer full connectivity. As a result, quantum circuits may not be directly executed on quantum hardware, and a quantum compiler needs to perform qubit routing to make the circuit compatible with the device layout. During the qubit routing step, the compiler inserts SWAP gates and performs circuit transformations. Given the connectivity topology of the target hardware, there are typically multiple qubit routing candidates. The state-of-the-art compilers use a cost function to evaluate the number of SWAP gates for different routes and then select the one with the minimum number of SWAP gates. After qubit routing, the quantum compiler performs gate optimizations upon the circuit with the newly inserted SWAP gates. In this paper, we observe that the aforementioned qubit routing is not optimal, and qubit routing should not be independent on subsequent gate optimizations. We find that with the consideration of gate optimizations, not all of the SWAP gates have the same basis-gate cost. These insights lead to the development of our qubit routing algorithm, NASSC (Not All Swaps have the Same Cost). NASSC is the first algorithm that considers the subsequent optimizations during the routing step. Our optimization-aware qubit routing leads to better routing decisions and benefits subsequent optimizations. We also propose a new optimization-aware decomposition for the inserted SWAP gates. Our experiments show that the routing overhead compiled with our routing algorithm is reduced by up to 69.30% (21.30% on average) in the number of CNOT gates and up to 43.50% (7.61% on average) in the circuit depth compared with the state-of-the-art scheme, SABRE.
more »
« less
A New Routing Strategy to Improve Success Rates of Quantum Computers
In the current noisy intermediate-scale quantum (NISQ) Era, Quantum Computing faces significant challenges due to noise, which severely restricts the application of computing complex algorithms. Superconducting quantum chips, one of the pioneer quantum computation technologies, introduce additional noise when moving qubits to adjacent locations for operation on designated two-qubit gates. The current compilers rely on decision models that either count the swap gates or multiply the gate errors when choosing swap paths at the routing stage. Our research has unveiled the overlooked situations for error propagations through the circuit, leading to accumulations that may affect the final output. In this paper, we propose Error Propagation-Aware Routing (EPAR), designed to enhance the compilation performance by considering accumulated errors in routing. EPAR’s effectiveness is validated through benchmarks on a 27-qubit machine and two simulated systems with different topologies. The results indicate an average success rate improvement of 10% on both real and simulated heavy hex lattice topologies, along with a 16% enhancement in a mesh topology simulation. These findings underscore the potential of EPAR to advance quantum computing in the NISQ era substantially.
more »
« less
- Award ID(s):
- 2019511
- PAR ID:
- 10529725
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400706059
- Page Range / eLocation ID:
- 546 to 550
- Subject(s) / Keyword(s):
- Quantum Computing, Routing Compilation, Performance
- Format(s):
- Medium: X Size: 1MB
- Size(s):
- 1MB
- Location:
- Clearwater FL USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to the limited decoherence time of qubits in the Noisy Intermediate-Scale Quantum (NISQ) era, optimizing the size and depth of logical quantum circuits for efficient implementation on sparsely connected physical architectures is crucial. In this work, we extend the Approximate Token Swapping (ATS) algorithm by incorporating qubit priority and the size of permutation cycles to be routed. We refer to this algorithm as Priority-ATS (PATS), which also considers CNOT gate errors while constructing the routing schedule for the qubits. We provide theoretical justification for the superior effectiveness of PATS over ATS and experimentally demonstrate its ability to improve the fidelity of the output state. Furthermore, we use depolarizing error channels to model the noisy CNOT gates, where each adjacent qubit pair has a distinct error rate. By employing realistic error rates, we showcase the robust improvement in output fidelity when using PATS as opposed to a noise-oblivious ATS routing scheme.more » « less
-
Quantum computing is gaining momentum in revolutionizing the way we approach complex problem-solving. However, the practical implementation of quantum algorithms remains a significant challenge due to the error-prone and hardware limits of near-term quantum devices. For instance, physical qubit connections are limited, which necessitates the use of quantum SWAP gates to dynamically transform the logical topology during execution. In addition, to optimize fidelity, it is essential to ensure that 1) the allocated hardware has a low error rate and 2) the number of SWAP gates injected into the circuit is minimized. To address these challenges, we propose a suite of algorithms: the Fidelity-aware Graph Extraction Algorithm (FGEA) is used to identify the hardware region with the lowest probability of error, the Frequency-based Mapping Algorithm (FMA) allocates logical-physical qubits that reduce the potential distance of topological transformation, and the Heuristic Routing Algorithm (HRA) searches for an optimal swapping injection strategy. We evaluate the proposed algorithms on the IBM-provided Noisy Intermediate-Scale Quantum (NISQ) computer, using a dataset consisting of 17 different quantum circuits of various sizes. The circuits are executed on the IBM Toronto Falcon processor. The three proposed algorithms outperform the existing SABRE algorithm in reducing the number of SWAP gates required. Therefore, our proposed algorithms hold significant promise in enhancing the fidelity and reducing the number of SWAP gates required in implementing Quantum algorithms.more » « less
-
Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method.more » « less
-
Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era.more » « less
An official website of the United States government

