Context. A low-mass companion potentially in the brown dwarf mass regime was discovered on a ~12 yr orbit (~5.5 au) around HD 167665 using radial velocity (RV) monitoring. Joint RV–astrometry analyses confirmed that HD 167665B is a brown dwarf with precisions on the measured mass of ~4–9%. Brown dwarf companions with measured mass and luminosity are valuable for testing formation and evolutionary models. However, its atmospheric properties and luminosity are still unconstrained, preventing detailed tests of evolutionary models. Aims. We further characterize the HD 167665 system by measuring the luminosity and refining the mass of its companion and reassessing the stellar age. Methods. We present new high-contrast imaging data of the star and of its close-in environment from SPHERE and GRAVITY, which we combined with RV data from CORALIE and HIRES and astrometry from HIPPARCOSandGaia. Results. The analysis of the host star properties indicates an age of 6.20 ± 1.13 Gyr. GRAVITY reveals a point source near the position predicted from a joint fit of RV data and HIPPARCOS–Gaiaproper motion anomalies. Subsequent SPHERE imaging confirms the detection and reveals a faint point source of contrast of ∆H2= 10.95 ± 0.33 mag at a projected angular separation of ~180 mas. A joint fit of the high-contrast imaging, RV, and HIPPARCOSintermediate astrometric data together with theGaiaastrometric parameters constrains the mass of HD 167665B to ~1.2%, 60.3 ± 0.7MJ. The SPHERE colors and spectrum point to an early or mid-T brown dwarf of spectral type T4−2+1. Fitting the SPHERE spectrophotometry and GRAVITY spectrum with synthetic spectra suggests an effective temperature of ~1000–1150 K, a surface gravity of ~5.0–5.4 dex, and a bolometric luminosity log(L/L⊙)=−4.892−0.028+0.024dex. The mass, luminosity, and age of the companion can only be reproduced within 3σby the hybrid cloudy evolutionary models of Saumon & Marley (2008, ApJ, 689, 1327), whereas cloudless evolutionary models underpredict its luminosity.
more »
« less
High contrast at short separation with VLTI/GRAVITY: Bringing Gaia companions to light
Context.Since 2019, GRAVITY has provided direct observations of giant planets and brown dwarfs at separations of down to 95 mas from the host star. Some of these observations have provided the first direct confirmation of companions previously detected by indirect techniques (astrometry and radial velocities). Aims.We want to improve the observing strategy and data reduction in order to lower the inner working angle of GRAVITY in dual-field on-axis mode. We also want to determine the current limitations of the instrument when observing faint companions with separations in the 30–150 mas range. Methods.To improve the inner working angle, we propose a fiber off-pointing strategy during the observations to maximize the ratio of companion-light-to-star-light coupling in the science fiber. We also tested a lower-order model for speckles to decouple the companion light from the star light. We then evaluated the detection limits of GRAVITY using planet injection and retrieval in representative archival data. We compare our results to theoretical expectations. Results.We validate our observing and data-reduction strategy with on-sky observations; first in the context of brown dwarf follow-up on the auxiliary telescopes with HD 984 B, and second with the first confirmation of a substellar candidate around the starGaiaDR3 2728129004119806464. With synthetic companion injection, we demonstrate that the instrument can detect companions down to a contrast of 8 × 10−4(ΔΚ= 7.7 mag) at a separation of 35 mas, and a contrast of 3 × 10−5(ΔΚ= 11 mag) at 100 mas from a bright primary (K< 6.5), for 30 min exposure time. Conclusions.With its inner working angle and astrometric precision, GRAVITY has a unique reach in direct observation parameter space. This study demonstrates the promising synergies between GRAVITY andGaiafor the confirmation and characterization of substellar companions.
more »
« less
- Award ID(s):
- 2009489
- PAR ID:
- 10529769
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 686
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of 34 comoving systems containing an ultracool dwarf found by means of the NOIRLab Source Catalog (NSC) DR2. NSC’s angular resolution of ∼ 1″ allows for the detection of small separation binaries with significant proper motions. We used the catalog’s accurate proper motion measurements to identify the companions by cross-matching a previously compiled list of brown dwarf candidates with NSC DR2. The comoving pairs consist of either a very low-mass star and an ultracool companion, or a white dwarf and an ultracool companion. The estimated spectral types of the primaries are in the K and M dwarf regimes, those of the secondaries in the M, L, and T dwarf regimes. We calculated angular separations between ∼2″ and ∼ 56″, parallactic distances between ∼43 and ∼261 pc, and projected physical separations between ∼169 and ∼8487 au. The lowest measured total proper motion is 97 mas yr−1, with the highest 314 mas yr−1. Tangential velocities range from ∼23 to ∼187 km s−1. We also determined comoving probabilities, estimated mass ratios, and calculated binding energies for each system. We found no indication of possible binarity for any component of the 34 systems in the published literature. The discovered systems can contribute to the further study of the formation and evolution of low-mass systems as well as to the characterization of cool substellar objects.more » « less
-
Abstract The detection of satellites around extrasolar planets, so called exomoons, remains a largely unexplored territory. In this work, we study the potential of detecting these elusive objects from radial velocity monitoring of self-luminous, directly imaged planets. This technique is now possible thanks to the development of dedicated instruments combining the power of high-resolution spectroscopy and high-contrast imaging. First, we demonstrate a sensitivity to satellites with a mass ratio of 1%–4% at separations similar to the Galilean moons from observations of a brown-dwarf companion (HR 7672 B;Kmag= 13; 0.″7 separation) with the Keck Planet Imager and Characterizer (R∼ 35,000 in theKband) at the W. M. Keck Observatory. Current instrumentation is therefore already sensitive to large unresolved satellites that could be forming from gravitational instability akin to binary star formation. Using end-to-end simulations, we then estimate that future instruments such as the Multi-Object Diffraction-limited High-resolution Infrared Spectrograph, planned for the Thirty Meter Telescope, should be sensitive to satellites with mass ratios of ∼10−4. Such small moons would likely form in a circumplanetary disk similar to the Jovian satellites in the solar system. Looking for the Rossiter–McLaughlin effect could also be an interesting pathway to detecting the smallest moons on short orbital periods. Future exomoon discoveries will allow precise mass measurements of the substellar companions that they orbit and provide key insight into the formation of exoplanets. They would also help constrain the population of habitable Earth-sized moons orbiting gas giants in the habitable zone of their stars.more » « less
-
Abstract We present Super-RDI, a unique framework for the application of reference star differential imaging (RDI) to Keck/NIRC2 high-contrast imaging observations with the vortex coronagraph. Super-RDI combines frame selection and signal-to-noise ratio (S/N) optimization techniques with a large multiyear reference point-spread function (PSF) library to achieve optimal PSF subtraction at small angular separations. We compile an ∼7000 frame reference PSF library based on a set of 288 new Keck/NIRC2 sequences of 237 unique targets acquired between 2015 and 2019 as part of two planet-search programs designed for RDI, one focusing on nearby young M dwarfs and the other targeting members of the Taurus star-forming region. For our data set, synthetic companion injection-recovery tests reveal that frame selection with the mean-squared error metric combined with Karhunen–Loève Image-Processing-based PSF subtraction using 1000–3000 frames and ≲500 principal components yields the highest average S/N for injected synthetic companions. We uniformly reduce targets in the young M-star survey with both Super-RDI and angular differential imaging (ADI). For the typical parallactic angle rotation of our data set (∼10°), Super-RDI performs better than a widely used implementation of ADI-based PSF subtraction at separations ≲0.″4 (≈5λ/D), gaining an average of 0.25 mag in contrast at 0.″25 and 0.4 mag in contrast at 0.″15. This represents a performance improvement in separation space over RDI with single-night reference star observations (∼100 frame PSF libraries) applied to a similar Keck/NIRC2 data set in previous work. We recover two known brown dwarf companions and provide detection limits for 155 targets in the young M-star survey. Our results demonstrate that increasing the PSF library size with careful selection of reference frames can improve the performance of RDI with the Keck/NIRC2 vortex coronagraph in .more » « less
-
ABSTRACT We present 3D hydrodynamic models of the interaction between the outflows of evolved, pulsating, Asymptotic Giant Branch (AGB) stars and nearby (<3 stellar radii) substellar companions (Mcomp ≲ 40 MJ). Our models show that due to resonances between the orbital period of the companion and the pulsation period of the AGB star, multiple spiral structures can form; the shocks driven by the pulsations are enhanced periodically in different regions as they encounter the denser material created by the substellar companion’s wake. We discuss the properties of these spiral structures and the effect of the companion parameters on them. We also demonstrate that the gravitational potential of the nearby companion enhances the mass-loss from the AGB star. For more massive (Mcomp > 40 MJ) and more distant companions (>4 stellar radii), a single spiral arm forms. We discuss the possibility of observing these structures with the new generations of high-resolution, high-sensitivity instruments, and using them to ‘find’ substellar companions around bright, evolved stars. Our results also highlight possible structures that could form in our Solar system when the Sun turns into an AGB star.more » « less
An official website of the United States government

