We study theories of type D4 in class-S, with nonabelian outer-automorphism twists around various cycles of the punctured Riemann surface C. We propose an extension of previous formulæ for the superconformal index to cover this case and classify the SCFTs corresponding to fixtures (3-punctured spheres). We then go on to study families of SCFTs corresponding to once-punctured tori and 4-punctured spheres. These exhibit new behaviours, not seen in previous investigations. In particular, the generic theory with 4 punctures on the sphere from non-commuting Z2 twisted sectors has six distinct weakly-coupled descriptions.
more »
« less
Nitrogen cleavage and catalytic reactivity of a unique dinitrogen-bridged d4-d4 diarylamino-based PNP molybdenum complex
- Award ID(s):
- 2117792
- PAR ID:
- 10529815
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Format(s):
- Medium: X
- Location:
- Chicago, IL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Symmetry-adapted perturbation theory (SAPT) directly computes intermolecular interaction energy in terms of electrostatics, exchange-repulsion, induction/polarization, and London dispersion components. In SAPT based on Hartree–Fock (“SAPT0”) or based on density functional theory, the most time-consuming step is the computation of the dispersion terms. Previous work has explored the replacement of these expensive dispersion terms with simple damped asymptotic models. We recently examined [Schriber et al. J. Chem. Phys. 154, 234107 (2021)] the accuracy of SAPT0 when replacing its dispersion term with Grimme’s popular -D3 correction, reducing the computational cost scaling from O(N5) to O(N3). That work optimized damping function parameters for SAPT0-D3/jun-cc-pVDZ using estimates of the coupled-cluster complete basis set limit [CCSD(T)/CBS] on a 8299 dimer dataset. Here, we explore the accuracy of SAPT0-D3 with additional basis sets, along with an analogous model using -D4. Damping parameters are rather insensitive to basis sets, and the resulting SAPT0-D models are more accurate on average for total interaction energies than SAPT0. Our results are surprising in several respects: (1) improvement of -D4 over -D3 is negligible for these systems, even charged systems where -D4 should, in principle, be more accurate; (2) addition of Axilrod–Teller–Muto terms for three-body dispersion does not improve error statistics for this test set; and (3) SAPT0-D is even more accurate on average for total interaction energies than the much more computationally costly density functional theory based SAPT [SAPT(DFT)] in an aug-cc-pVDZ basis. However, SAPT0 and SAPT0-D3/D4 interaction energies benefit from significant error cancellation between exchange and dispersion terms.more » « less
An official website of the United States government

