We study revenue optimization in a repeated auction between a single seller and a single buyer. Traditionally, the design of repeated auctions requires strong modeling assumptions about the bidder behavior, such as it being myopic, infinite lookahead, or some specific form of learning behavior. Is it possible to design mechanisms which are simultaneously optimal against a multitude of possible buyer behaviors? We answer this question by designing a simple state-based mechanism that is simultaneously approximately optimal against a k-lookahead buyer for all k, a buyer who is a no-regret learner, and a buyer who is a policy-regret learner. Against each type of buyer our mechanism attains a constant fraction of the optimal revenue attainable against that type of buyer. We complement our positive results with almost tight impossibility results, showing that the revenue approximation tradeoffs achieved by our mechanism for different lookahead attitudes are near-optimal.
more »
« less
Selling Data To a Machine Learner: Pricing via Costly Signaling
We consider a new problem of selling data to a machine learner who looks to purchase data to train his machine learning model. A key challenge in this setup is that neither the seller nor the machine learner knows the true quality of data. When designing a revenue-maximizing mechanism, a data seller faces the tradeoff between the cost and precision of data quality estimation. To address this challenge, we study a natural class of mechanisms that price data via costly signaling. Motivated by the assumption of i.i.d. data points as in classic machine learning models, we first consider selling homogeneous data and derive an optimal selling mechanism. We then turn to the sale of heterogeneous data, motivated by the sale of multiple data sets, and show that 1) on the negative side, it is NP-hard to approximate the optimal mechanism within a constant ratio e/(e+1) + o(1); while 2) on the positive side, there is a 1/k-approximate algorithm, where k is the number of the machine learner’s private types.
more »
« less
- Award ID(s):
- 2303372
- PAR ID:
- 10530059
- Publisher / Repository:
- Proceedings of the 39th International Conference on Machine Learning (ICML 2022)
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Location:
- https://proceedings.mlr.press/v162/chen22m.html
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically, the buyer has a value drawn fresh from known distribution $$D$$ in every round). Prior work assumes that the buyer is fully rational and will perfectly reason about how their bids today affect the seller's decisions tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this domain. Specifically: 1) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), then the seller can extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the buyer's valuation $$D$$, but somewhat unnatural as it is sometimes in the buyer's interest to overbid. 2) There exists a learning algorithm $$\mathcal{A}$$ such that if the buyer bids according to $$\mathcal{A}$$ then the optimal strategy for the seller is simply to post the Myerson reserve for $$D$$ every round. 3) If the buyer bids according to EXP3 (or any ``mean-based'' learning algorithm), but the seller is restricted to ``natural'' auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves over time. Moreover, the seller's optimal achievable revenue is characterized by a linear program, and can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than the expected welfare.more » « less
-
We study gains from trade in multi-dimensional two-sided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrained-additive buyer with feasibility constraint ℱ. Multi-dimensional settings in one-sided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are well-understood. In addition, single-dimensional settings in two-sided markets, e.g. where a buyer and seller each seek or own a single item, are also well-understood. Multi-dimensional two-sided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentive-compatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worst-case approximation guarantee for gains from trade in a multi-dimensional two-sided market. Our first result provides an O(log(1/r))-approximation to the first-best gains from trade for a broad class of downward-closed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)-approximation to the second-best gains from trade. We extend both results for a general constrained-additive buyer, losing another O(log n)-factor en-route. The first result is achieved using a fixed posted price mechanism, and the analysis involves a novel application of the prophet inequality or a new concentration inequality. Our second result follows from a stitching lemma that allows us to upper bound the second-best gains from trade by the first-best gains from trade from the “likely to trade” items (items with trade probability at least 1/n) and the optimal profit from selling the “unlikely to trade” items. We can obtain an O(log n)-approximation to the first term by invoking our O(log(1/r))-approximation on the “likely to trade” items. We introduce a generalization of the fixed posted price mechanism—seller adjusted posted price—to obtain an O(log n)-approximation to the optimal profit for the “unlikely to trade” items. Unlike fixed posted price mechanisms, not all seller adjusted posted price mechanisms are incentive compatible and budget balanced. We develop a new argument based on “allocation coupling” to show the seller adjusted posted price mechanism used in our approximation is indeed budget balanced and incentive-compatible.more » « less
-
Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders.more » « less
-
null (Ed.)We consider the classical problem of selling a single item to a single bidder whose value for the item is drawn from a regular distribution F, in a "data-poor'' regime where Fis not known to the seller, and very few samples from Fare available. Prior work [Dhangwatnotai et al '10] has shown that one sample from Fcan be used to attain a 1/2-factor approximation to the optimal revenue, but it has been challenging to improve this guarantee when more samples from Fare provided, even when two samples from Fare provided. In this case, the best approximation known to date is 0.509, achieved by the Empirical Revenue Maximizing (ERM) mechanism Babaioff et al. '18]. We improve this guarantee to 0.558, and provide a lower bound of 0.65. Our results are based on a general framework, based on factor-revealing Semidefinite Programming relaxations aiming to capture as tight as possible a superset of product measures of regular distributions, the challenge being that neither regularity constraints nor product measures are convex constraints. The framework is general and can be applied in more abstract settings to evaluate the performance of a policy chosen using independent samples from a distribution and applied on a fresh sample from that same distribution.more » « less
An official website of the United States government

