Structural causal models (SCMs) are widely used in various disciplines to represent causal relationships among variables in complex systems. Unfortunately, the true underlying directed acyclic graph (DAG) structure is often unknown, and determining it from observational or interventional data remains a challenging task. However, in many situations, the end goal is to identify changes (shifts) in causal mechanisms between related SCMs rather than recovering the entire underlying DAG structure. Examples include analyzing gene regulatory network structure changes between healthy and cancerous individuals or understanding variations in biological pathways under different cellular contexts. This paper focuses on identifying functional mechanism shifts in two or more related SCMs over the same set of variables -- without estimating the entire DAG structure of each SCM. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key contribution of this work is to show that the Jacobian of the score function for the mixture distribution allows for identification of shifts in general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach.
more »
« less
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models
Structural causal models (SCMs) are widely used in various disciplines to repre- sent causal relationships among variables in complex systems. Unfortunately, the underlying causal structure is often unknown, and estimating it from data remains a challenging task. In many situations, however, the end goal is to localize the changes (shifts) in the causal mechanisms between related datasets instead of learn- ing the full causal structure of the individual datasets. Some applications include root cause analysis, analyzing gene regulatory network structure changes between healthy and cancerous individuals, or explaining distribution shifts. This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables—without estimating the entire DAG structure of each SCM. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key technical contribution of this work is to show that the Jacobian of the score function for the mixture distribution allows for the identification of shifts under general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach. Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
more »
« less
- PAR ID:
- 10530097
- Publisher / Repository:
- Neural Information Processing Systems (NeurIPS), 2023
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pursuit of generalizable representations in the realm of machine learning and computer vision is a dynamic field of research. Typically, current methods aim to secure invariant representations by either harnessing domain expertise or leveraging data from multiple domains. In this paper, we introduce a novel approach that involves acquiring Causal Markov Blanket (CMB) representations to improve prediction performance in the face of distribution shifts. Causal Markov Blanket representations comprise the direct causes and effects of the target variable, rendering them invariant across diverse domains. To elaborate, our approach commences with the introduction of a novel structural causal model (SCM) equipped with latent representations, designed to capture the underlying causal mechanisms governing the data generation process. Subsequently, we propose a CMB representation learning framework that derives representations conforming to the proposed SCM. In comparison to state-of-the-art domain generalization methods, our approach exhibits robustness and adaptability under distribution shiftsmore » « less
-
Answering counterfactual queries has important applications such as explainability, robustness, and fairness but is challenging when the causal variables are unobserved and the observations are non-linear mixtures of these latent variables, such as pixels in images. One approach is to recover the latent Structural Causal Model (SCM), which may be infeasible in practice due to requiring strong assumptions, e.g., linearity of the causal mechanisms or perfect atomic interventions. Meanwhile, more practical ML-based approaches using naive domain translation models to generate counterfactual samples lack theoretical grounding and may construct invalid counterfactuals. In this work, we strive to strike a balance between practicality and theoretical guarantees by analyzing a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). We show that recovering the latent SCM is unnecessary for estimating domain counterfactuals, thereby sidestepping some of the theoretic challenges. By assuming invertibility and sparsity of intervention, we prove domain counterfactual estimation error can be bounded by a data fit term and intervention sparsity term. Building upon our theoretical results, we develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation under autoregressive and shared parameter constraints that enforce intervention sparsity. Finally, we show an improvement in counterfactual estimation over baseline methods through extensive simulated and image-based experiments.more » « less
-
Identifying latent variables and causal structures from observational data is essential to many real-world applications involving biological data, medical data, and unstructured data such as images and languages. However, this task can be highly challenging, especially when observed variables are generated by causally related latent variables and the relationships are nonlinear. In this work, we investigate the identification problem for nonlinear latent hierarchical causal models in which observed variables are generated by a set of causally related latent variables, and some latent variables may not have observed children. We show that the identifiability of both causal structure and latent variables can be achieved under mild assumptions: on causal structures, we allow for the existence of multiple paths between any pair of variables in the graph, which relaxes latent tree assumptions in prior work; on structural functions, we do not make parametric assumptions, thus permitting general nonlinearity and multi-dimensional continuous variables. Specifically, we first develop a basic identification criterion in the form of novel identifiability guarantees for an elementary latent variable model. Leveraging this criterion, we show that both causal structures and latent variables of the hierarchical model can be identified asymptotically by explicitly constructing an estimation procedure. To the best of our knowledge, our work is the first to establish identifiability guarantees for both causal structures and latent variables in nonlinear latent hierarchical models.more » « less
-
One of the central elements of any causal inference is an object called structural causal model (SCM), which represents a collection of mechanisms and exogenous sources of random variation of the system under investigation (Pearl, 2000). An important property of many kinds of neural networks is universal approximability: the ability to approximate any function to arbitrary precision. Given this property, one may be tempted to surmise that a collection of neural nets is capable of learning any SCM by training on data generated by that SCM. In this paper, we show this is not the case by disentangling the notions of expressivity and learnability. Specifically, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020), which describes the limits of what can be learned from data, still holds for neural models. For instance, an arbitrarily complex and expressive neural net is unable to predict the effects of interventions given observational data alone. Given this result, we introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences. Building on this new class of models, we focus on solving two canonical tasks found in the literature known as causal identification and estimation. Leveraging the neural toolbox, we develop an algorithm that is both sufficient and necessary to determine whether a causal effect can be learned from data (i.e., causal identifiability); it then estimates the effect whenever identifiability holds (causal estimation). Simulations corroborate the proposed approach.more » « less
An official website of the United States government

