skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two MADS-box proteins, AGL9 and AGL15, recruit the FIS-PRC2 complex to trigger the phase transition from endosperm proliferation to embryo development in Arabidopsis
Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4–5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4–5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.  more » « less
Award ID(s):
1933291
PAR ID:
10530131
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
CelPress
Date Published:
Journal Name:
Molecular Plant
Volume:
17
Issue:
7
ISSN:
1674-2052
Page Range / eLocation ID:
1110 to 1128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolution is driven by various mechanisms. A directional increase in the embryo to endosperm ratio is an evolutionary trend within the angiosperms. The endosperm constitutes a major portion of the seed volume in Poales and some dicots. However, in other dicots such as Arabidopsis and soybean, the endosperm proliferates early, followed by embryo growth to replace the endosperm. The Arabidopsis leucine-rich repeat receptor protein kinase AtHAIKU2 (AtIKU2) is a key regulator of early endosperm proliferation. In this study, we found that IKU2s from Brachypodium, rice, and soybean can complement the abnormal seed developmental phenotype of Atiku2, while AtIKU2 also rescues the defective endosperm proliferation in the Brachypodium BdIKU2 knockout mutant seeds. AtIKU2 and soybean GmIKU2 are actively expressed a few days after fertilization. Thereafter, expression of AtIKU2 is suppressed by the FIS-PRC2 complex-mediated H3K27me3. The soybean GmIKU2 locus is also enriched with H3K27me3 marks. The histone methyltransferase AtMEA is unique to Brassicaceae, but one GmSWN in soybean plays a similar role in seed development as AtMEA. By contrast, the BdIKU2 and rice OsIKU2 loci are continuously expressed and are devoid of H3K27me3 marks. Taken together, these results suggest that IKU2 genes retain an ancestral function, but the duration of their expression that is controlled by PRC2-mediated epigenetic silencing contributes to silenced or persistent endosperm proliferation in different species. Our study reveals an epigenetic mechanism that drives the development of vastly different seed ontogenies. 
    more » « less
  2. Abstract Background Nuclear endosperm development is a common mechanism among Angiosperms, including Arabidopsis. During nuclear development, the endosperm nuclei divide rapidly after fertilization without cytokinesis to enter the syncytial phase, which is then followed by the cellularized phase. The endosperm can be divided into three spatial domains with distinct functions: the micropylar, peripheral, and chalazal domains. Previously, we identified two putative small invertase inhibitors, InvINH1 and InvINH2, that are specifically expressed in the micropylar region of the syncytial endosperm. In addition, ectopically expressing InvINH1 in the cellularized endosperm led to a reduction in embryo growth rate. However, it is not clear what are the upstream regulators responsible for the specific expression of InvINHs in the syncytial endosperm. Results Using protoplast transient expression system, we discovered that a group of type I MADS box transcription factors can form dimers to activate InvINH1 promoter. Promoter deletion assays carried out in the protoplast system revealed the presence of an enhancer region in InvINH1 promoter, which contains several consensus cis-elements for the MADS box proteins. Using promoter deletion assay in planta , we further demonstrated that this enhancer region is required for InvINH1 expression in the syncytial endosperm. One of the MADS box genes, AGL62, is a key transcription factor required for syncytial endosperm development. Using promoter-GFP reporter assay, we demonstrated that InvINH1 and InvINH2 are not expressed in agl62 mutant seeds. Collectively, our data supports the role of AGL62 and other type I MADS box genes as the upstream activators of InvINHs expression in the syncytial endosperm. Conclusions Our findings revealed several type I MADS box genes that are responsible for activating InvINH1 in the syncytial endosperm, which in turn regulates embryo growth rate during early stage of seed development. 
    more » « less
  3. Crucial to plant development, ambient temperature triggers intricate mechanisms enabling adaptive responses to temperature variations. The precise coordination of chromatin modifications in shaping cell developmental fate under diverse temperatures remains elusive. Our study, integrating comprehensive transcriptome, epigenome profiling, and genetics, demonstrates that lower ambient temperature (16°C) partially restores developmental defects caused by H3K27me3 loss in prc2 mutants by specifically depositing H2A.Zub at ectopically expressed embryonic genes in Arabidopsis, such as ABA INSENSITIVE 3 (ABI3) and LEAFY COTYLEDON 1 (LEC1). This deposition leads to downregulation of these genes and compensates for H3K27me3 depletion. Polycomb-repressive complex 1 (PRC1)-catalyzed H2A.Zub and PRC2-catalyzed H3K27me3 play roles in silencing transcription of embryonic genes for post-germination development. Low-temperature-induced reduction of TOE1 protein level decelerates H2A.Z turnover at specific loci, sustaining repression of embryonic genes and alleviating requirement for PRC2-H3K27me3 at post-germination stage. Our findings offer mechanistic insights into the cooperative epigenetic layers, facilitating plant adaptation to varying environmental temperatures. 
    more » « less
  4. The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size. 
    more » « less
  5. Abstract Fertilization is a fundamental process that triggers seed and fruit development, but the molecular mechanisms underlying fertilization-induced seed development are poorly understood. Previous research has established AGamous-Like62 (AGL62) activation and auxin biosynthesis in the endosperm as key events following fertilization in Arabidopsis (Arabidopsis thaliana) and wild strawberry (Fragaria vesca). To test the hypothesis that epigenetic mechanisms are critical in mediating the effect of fertilization on the activation of AGL62 and auxin biosynthesis in the endosperm, we first identified and analyzed imprinted genes from the endosperm of wild strawberries. We isolated endosperm tissues from F1 seeds of 2 wild strawberry F. vesca subspecies, generated endosperm-enriched transcriptomes, and identified candidate Maternally Expressed and Paternally Expressed Genes (MEGs and PEGs). Through bioinformatic analyses, we identified 4 imprinted genes that may be involved in regulating the expression of FveAGL62 and auxin biosynthesis genes. We conducted functional analysis of a maternally expressed gene FveMYB98 through CRISPR-knockout and over-expression in transgenic strawberries as well as analysis in heterologous systems. FveMYB98 directly repressed FveAGL62 at stage 3 endosperm, which likely serves to limit auxin synthesis and endosperm proliferation. These results provide an inroad into the regulation of early-stage seed development by imprinted genes in strawberries, suggest the potential function of imprinted genes in parental conflict, and identify FveMYB98 as a regulator of a key transition point in endosperm development. 
    more » « less