Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance.
more »
« less
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Data augmentation is critical to the empirical success of modern self-supervised representation learning, such as contrastive learning and masked language modeling. However, a theoretical understanding of the exact role of augmentation remains limited. Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator, suggesting that learning a linear probe atop such representation can be connected to RKHS regression. Building on this insight, this work delves into a statistical analysis of augmentation-based pretraining. Starting from the isometry property, a geometric characterization of the target function given by the augmentation, we disentangle the effects of the model and the augmentation, and prove two generalization bounds that are free of model complexity. Our first bound works for an arbitrary encoder, where the prediction error is decomposed as the sum of an estimation error incurred by fitting a linear probe with RKHS regression, and an approximation error entailed by RKHS approximation. Our second bound specifically addresses the case where the encoder is near-optimal, that is it approximates the top-d eigenspace of the RKHS induced by the augmentation. A key ingredient in our analysis is the augmentation complexity, which we use to quantitatively compare different augmentations and analyze their impact on downstream performance.
more »
« less
- Award ID(s):
- 2211907
- PAR ID:
- 10530218
- Publisher / Repository:
- International Conference on Learning Representations (ICLR), 2024
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. In this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $$\ell_2$$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness.more » « less
-
Modern deep learning methods provide effective means to learn good representations. However, is a good representation itself sufficient for sample efficient reinforcement learning? This question has largely been studied only with respect to (worst-case) approximation error, in the more classical approximate dynamic programming literature. With regards to the statistical viewpoint, this question is largely unexplored, and the extant body of literature mainly focuses on conditions which permit sample efficient reinforcement learning with little understanding of what are necessary conditions for efficient reinforcement learning. This work shows that, from the statistical viewpoint, the situation is far subtler than suggested by the more traditional approximation viewpoint, where the requirements on the representation that suffice for sample efficient RL are even more stringent. Our main results provide sharp thresholds for reinforcement learning methods, showing that there are hard limitations on what constitutes good function approximation (in terms of the dimensionality of the representation), where we focus on natural representational conditions relevant to value-based, model-based, and policy-based learning. These lower bounds highlight that having a good (value-based, model-based, or policy-based) representation in and of itself is insufficient for efficient reinforcement learning, unless the quality of this approximation passes certain hard thresholds. Furthermore, our lower bounds also imply exponential separations on the sample complexity between 1) value-based learning with perfect representation and value-based learning with a good-but-not-perfect representation, 2) value-based learning and policy-based learning, 3) policy-based learning and supervised learning and 4) reinforcement learning and imitation learning.more » « less
-
We initiate a study of supervised learning from many independent sequences ("trajectories") of non-independent covariates, reflecting tasks in sequence modeling, control, and reinforcement learning. Conceptually, our multi-trajectory setup sits between two traditional settings in statistical learning theory: learning from independent examples and learning from a single auto-correlated sequence. Our conditions for efficient learning generalize the former setting--trajectories must be non-degenerate in ways that extend standard requirements for independent examples. Notably, we do not require that trajectories be ergodic, long, nor strictly stable. For linear least-squares regression, given n-dimensional examples produced by m trajectories, each of length T, we observe a notable change in statistical efficiency as the number of trajectories increases from a few (namely m<=n) to many (namely m>=n). Specifically, we establish that the worst-case error rate of this problem is n/(mT) whenever m>=n. Meanwhile, when m<=n, we establish a (sharp) lower bound of n^2/(m^2T) on the worst-case error rate, realized by a simple, marginally unstable linear dynamical system. A key upshot is that, in domains where trajectories regularly reset, the error rate eventually behaves as if all of the examples were independent, drawn from their marginals. As a corollary of our analysis, we also improve guarantees for the linear system identification problem.more » « less
-
We present a novel self-supervised approach for hierarchical representation learning and segmentation of perceptual inputs in a streaming fashion. Our research addresses how to semantically group streaming inputs into chunks at various levels of a hierarchy while simultaneously learning, for each chunk, robust global representations throughout the domain. To achieve this, we propose STREAMER, an architecture that is trained layer-by-layer, adapting to the complexity of the input domain. In our approach, each layer is trained with two primary objectives: making accurate predictions into the future and providing necessary information to other levels for achieving the same objective. The event hierarchy is constructed by detecting prediction error peaks at different levels, where a detected boundary triggers a bottom-up information flow. At an event boundary, the encoded representation of inputs at one layer becomes the input to a higher-level layer. Additionally, we design a communication module that facilitates top-down and bottom-up exchange of information during the prediction process. Notably, our model is fully self-supervised and trained in a streaming manner, enabling a single pass on the training data. This means that the model encounters each input only once and does not store the data. We evaluate the performance of our model on the egocentric EPIC-KITCHENS dataset, specifically focusing on temporal event segmentation. Furthermore, we conduct event retrieval experiments using the learned representations to demonstrate the high quality of our video event representations. Illustration videos and code are available on our project page: https://ramymounir.com/publications/streamermore » « less