skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Species-Agnostic Patterned Animal Re-identification by Aggregating Deep Local Features
Abstract Access to large image volumes through camera traps and crowdsourcing provides novel possibilities for animal monitoring and conservation. It calls for automatic methods for analysis, in particular, when re-identifying individual animals from the images. Most existing re-identification methods rely on either hand-crafted local features or end-to-end learning of fur pattern similarity. The former does not need labeled training data, while the latter, although very data-hungry typically outperforms the former when enough training data is available. We propose a novel re-identification pipeline that combines the strengths of both approaches by utilizing modern learnable local features and feature aggregation. This creates representative pattern feature embeddings that provide high re-identification accuracy while allowing us to apply the method to small datasets by using pre-trained feature descriptors. We report a comprehensive comparison of different modern local features and demonstrate the advantages of the proposed pipeline on two very different species.  more » « less
Award ID(s):
2118240
PAR ID:
10530287
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
International Journal of Computer Vision
ISSN:
0920-5691
Subject(s) / Keyword(s):
Computer vision Image processing Animal biometrics Re-identification Ringed seals Convolutional neural networks imageomics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Automatic machine learning (AML) is a family of techniques to automate the process of training predictive models, aiming to both improve performance and make machine learning more accessible. While many recent works have focused on aspects of the machine learning pipeline like model selection, hyperparameter tuning, and feature selection, relatively few works have focused on automatic data augmentation. Automatic data augmentation involves finding new features relevant to the user's predictive task with minimal "human-in-the-loop" involvement. We present ARDA, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set such that training a predictive model on this augmented dataset results in improved performance. Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join. We perform an extensive empirical evaluation of different system components and benchmark our feature selection algorithm on real-world datasets. 
    more » « less
  2. Missions to small celestial bodies rely heavily on optical feature tracking for characterization of and relative navigation around the target body. While deep learning has led to great advancements in feature detection and description, training and validating data-driven models for space applications is challenging due to the limited availability of large-scale, annotated datasets. This paper introduces AstroVision, a large-scale dataset comprised of 115,970 densely annotated, real images of 16 different small bodies captured during past and ongoing missions. We leverage AstroVision to develop a set of standardized benchmarks and conduct an exhaustive evaluation of both handcrafted and data-driven feature detection and description methods. Next, we employ AstroVision for end-to-end training of a state-of-the-art, deep feature detection and description network and demonstrate improved performance on multiple benchmarks. The full benchmarking pipeline and the dataset will be made publicly available to facilitate the advancement of computer vision algorithms for space applications. 
    more » « less
  3. The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems. 
    more » « less
  4. Abstract Training language-conditioned policies is typically time-consuming and resource-intensive. Additionally, the resulting controllers are tailored to the specific robot they were trained on, making it difficult to transfer them to other robots with different dynamics. To address these challenges, we propose a new approach called Hierarchical Modularity, which enables more efficient training and subsequent transfer of such policies across different types of robots. The approach incorporates Supervised Attention which bridges the gap between modular and end-to-end learning by enabling the re-use of functional building blocks. In this contribution, we build upon our previous work, showcasing the extended utilities and improved performance by expanding the hierarchy to include new tasks and introducing an automated pipeline for synthesizing a large quantity of novel objects. We demonstrate the effectiveness of this approach through extensive simulated and real-world robot manipulation experiments. 
    more » « less
  5. Abstract We present a Lagrangian model of galaxy clustering bias in which we train a neural net using the local properties of the smoothed initial density field to predict the late-time mass-weighted halo field.By fitting the mass-weighted halo field in theAbacusSummitsimulations atz= 0.5, we find that including three coarsely spaced smoothing scales gives the best recovery of the halo power spectrum. Adding more smoothing scales may lead to 2–5% underestimation of the large-scale power and can cause the neural net to overfit.We find that the fitted halo-to-mass ratio can be well described by two directions in the original high-dimension feature space.Projecting the original features into these two principal components and re-training the neural net either reproduces the original training result, or outperforms it with a better match of the halo power spectrum. The elements of the principal components are unlikely to be assigned physical meanings, partly owing to the features being highly correlated between different smoothing scales.Our work illustrates a potential need to include multiple smoothing scales when studying galaxy bias, and this can be done easily with machine-learning methods that can take in high dimensional input feature space. 
    more » « less