skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2025

Title: Heterochromatin repeat organization at an individual level: Rex1BD and the 14‐3‐3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats
Abstract In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position‐dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position‐dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14‐3‐3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14‐3‐3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position‐dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.  more » « less
Award ID(s):
1934628
PAR ID:
10530591
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
BioEssays
Volume:
46
Issue:
7
ISSN:
0265-9247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tandem DNA repeats are often organized into heterochromatin that is crucial for genome organization and stability. Recent studies revealed that individual repeats within tandem DNA repeats can behave very differently. How DNA repeats are assembled into distinct heterochromatin structures remains poorly understood. Here, we developed a genome-wide genetic screen using a reporter gene at different units in a repeat array. This screen led to identification of a conserved protein Rex1BD required for heterochromatin silencing. Our structural analysis revealed that Rex1BD forms a four-helix bundle structure with a distinct charged electrostatic surface. Mechanistically, Rex1BD facilitates the recruitment of Clr6 histone deacetylase (HDAC) by interacting with histones. Interestingly, Rex1BD also interacts with the 14-3-3 protein Rad25, which is responsible for recruiting the RITS (RNA-induced transcriptional silencing) complex to DNA repeats. Our results suggest that coordinated action of Rex1BD and Rad25 mediates formation of distinct heterochromatin structure at DNA repeats via linking RNAi and HDAC pathways. 
    more » « less
  2. Abstract Heterochromatic gene silencing relies on combinatorial control by specific histone modifications, the occurrence of transcription, and/or RNA degradation. Once nucleated, heterochromatin propagates within defined chromosomal regions and is maintained throughout cell divisions to warrant proper genome expression and integrity. In the fission yeast Schizosaccharomyces pombe, the Ccr4-Not complex partakes in gene silencing, but its relative contribution to distinct heterochromatin domains and its role in nucleation versus spreading have remained elusive. Here, we unveil major functions for Ccr4-Not in silencing and heterochromatin spreading at the mating type locus and subtelomeres. Mutations of the catalytic subunits Caf1 or Mot2, involved in RNA deadenylation and protein ubiquitinylation, respectively, result in impaired propagation of H3K9me3 and massive accumulation of nucleation-distal heterochromatic transcripts. Both silencing and spreading defects are suppressed upon disruption of the heterochromatin antagonizing factor Epe1. Overall, our results position the Ccr4-Not complex as a critical, dual regulator of heterochromatic gene silencing and spreading. 
    more » « less
  3. Freitag, M (Ed.)
    Abstract Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC. 
    more » « less
  4. van Steensel, Bas (Ed.)
    Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin. 
    more » « less
  5. null (Ed.)
    Pericentromeric heterochromatin in Drosophila generally consists of repetitive DNA, forming the environment associated with gene silencing. Despite the expanding knowledge of the impact of transposable elements (TEs) on the host genome, little is known about the evolution of pericentromeric heterochromatin, its structural composition, and age. During the evolution of the Drosophilidae, hundreds of genes have become embedded within pericentromeric regions yet retained activity. We investigated a pericentromeric heterochromatin fragment found in D. virilis and related species, describing the evolution of genes in this region and the age of TE invasion. Regardless of the heterochromatic environment, the amino acid composition of the genes is under purifying selection. However, the selective pressure affects parts of genes in varying degrees, resulting in expansion of gene introns due to TEs invasion. According to the divergence of TEs, the pericentromeric heterochromatin of the species of virilis group began to form more than 20 million years ago by invasions of retroelements, miniature inverted repeat transposable elements (MITEs), and Helitrons. Importantly, invasions into the heterochromatin continue to occur by TEs that fall under the scope of piRNA silencing. Thus, the pericentromeric heterochromatin, in spite of its ability to induce silencing, has the means for being dynamic, incorporating the regions of active transcription. 
    more » « less