skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid, biochemical tagging of cellular activity history in vivo
Abstract Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.  more » « less
Award ID(s):
2152260
PAR ID:
10530754
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Methods
Volume:
21
Issue:
9
ISSN:
1548-7091
Format(s):
Medium: X Size: p. 1725-1735
Size(s):
p. 1725-1735
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode wormCaenorhabditis elegans, four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying. We have previously shown uv1 cells are mechanically deformed during egg laying, driving uv1 Ca2+transients. However, whether egg-laying circuit activity, vulval opening, and/or egg release triggered uv1 Ca2+activity was unclear. Here, we show uv1 responds directly to mechanical activation. Optogenetic vulval muscle stimulation triggers uv1 Ca2+activity following muscle contraction even in sterile animals. Direct mechanical prodding with a glass probe placed against the worm cuticle triggers robust uv1 Ca2+activity similar to that seen during egg laying. Direct mechanical activation of uv1 cells does not require other cells in the egg-laying circuit, synaptic or peptidergic neurotransmission, or transient receptor potential vanilloid and Piezo channels. EGL-19 L-type Ca2+channels, but not P/Q/N-type or ryanodine receptor Ca2+channels, promote uv1 Ca2+activity following mechanical activation. L-type channels also facilitate the coordinated activation of uv1 cells across the vulva, suggesting mechanical stimulation of one uv1 cell cross-activates the other. Our findings show how neuroendocrine cells like uv1 report on the mechanics of tissue deformation and muscle contraction, facilitating feedback to local circuits to coordinate behavior. 
    more » « less
  2. Background and PurposeHeart failure can reflect impaired contractile function at the myofilament level. In healthy hearts, myofilaments become more sensitive to Ca2+as cells are stretched. This represents a fundamental property of the myocardium that contributes to the Frank–Starling response, although the molecular mechanisms underlying the effect remain unclear. Mavacamten, which binds to myosin, is under investigation as a potential therapy for heart disease. We investigated how mavacamten affects the sarcomere‐length dependence of Ca2+‐sensitive isometric contraction to determine how mavacamten might modulate the Frank–Starling mechanism. Experimental ApproachMulticellular preparations from the left ventricular‐free wall of hearts from organ donors were chemically permeabilized and Ca2+activated in the presence or absence of 0.5‐μM mavacamten at 1.9 or 2.3‐μm sarcomere length (37°C). Isometric force and frequency‐dependent viscoelastic myocardial stiffness measurements were made. Key ResultsAt both sarcomere lengths, mavacamten reduced maximal force and Ca2+sensitivity of contraction. In the presence and absence of mavacamten, Ca2+sensitivity of force increased as sarcomere length increased. This suggests that the length‐dependent activation response was maintained in human myocardium, even though mavacamten reduced Ca2+sensitivity. There were subtle effects of mavacamten reducing force values under relaxed conditions (pCa 8.0), as well as slowing myosin cross‐bridge recruitment and speeding cross‐bridge detachment under maximally activated conditions (pCa 4.5). Conclusion and ImplicationsMavacamten did not eliminate sarcomere length‐dependent increases in the Ca2+sensitivity of contraction in myocardial strips from organ donors at physiological temperature. Drugs that modulate myofilament function may be useful therapies for cardiomyopathies. 
    more » « less
  3. Yao, Guang (Ed.)
    The molecular mechanisms regulating cell quiescence-proliferation balance are not well defined. Using a zebrafish model, we report that Stc1a, a secreted glycoprotein, plays a key role in regulating the quiescence-proliferation balance of Ca2+transporting epithelial cells (ionocytes). Zebrafishstc1a, but not the otherstcgenes, is expressed in a Ca2+state-dependent manner. Genetic deletion ofstc1a, but notstc2b, increased ionocyte proliferation, leading to elevated body Ca2+levels, cardiac edema, body swelling, and premature death. The increased ionocyte proliferation was accompanied by an increase in the IGF1 receptor-mediated PI3 kinase-Akt-Tor signaling activity in ionocytes. Inhibition of the IGF1 receptor, PI3 kinase, Akt, and Tor signaling reduced ionocyte proliferation and rescued the edema and premature death instc1a–/–fish, suggesting that Stc1a promotes ionocyte quiescence by suppressing local IGF signaling activity. Mechanistically, Stc1 acts by inhibiting Papp-aa, a zinc metalloproteinase degrading Igfbp5a. Inhibition of Papp-aa proteinase activity restored ionocyte quiescence-proliferation balance. Genetic deletion ofpapp-aaor its substrateigfbp5ain thestc1a–/–background reduced ionocyte proliferation and rescued the edema and premature death. These findings uncover a novel and Ca2+state-dependent pathway regulating cell quiescence. Our findings also provide new insights into the importance of ionocyte quiescent-proliferation balance in organismal Ca2+homeostasis and survival. 
    more » « less
  4. Abstract TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids. 
    more » « less
  5. Abstract Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1’s direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery. 
    more » « less