skip to main content


This content will become publicly available on June 1, 2025

Title: Mechanical Properties of an Ultrahard In Situ Amorphous Steel Matrix Composite
We report compression tests on micro-pillars manufactured from bulk specimens of partially devitrified SAM25 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4). Yield strength values of ~6 GPa were obtained. Such a high strength can be attributed to the higher glass transition temperature (883 K) of this material, which impedes the multiplication of shear bands under loading, and to the presence of hard crystalline domains that result from devitrification of the amorphous powders during powder consolidation. The Vickers hardness of the specimens was found to be strongly correlated to the processing temperature and, hence to the volume of crystalline phases present in the specimens. As the processing temperature is increased, there is a reduction in free volume from the structural relaxation process in the amorphous alloy, leading to the eventual nucleation of crystalline phases of BCC Fe, Cr2B, Cr21.30Fe1.7C6, or Fe23B2C4, during the densification process. These results shed light on the relationship between nanocrystalline domains and the mechanical behavior of Fe-based amorphous/crystalline composites.  more » « less
Award ID(s):
1911372
PAR ID:
10530762
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
11
ISSN:
1438-1656
Page Range / eLocation ID:
2400257
Subject(s) / Keyword(s):
crack propagation and arrest, fracture, indentation and hardness, metallic glass, particulate reinforced material
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐spatial resolution textural and geochemical data from thin slip surfaces in exhumed fault zones archive thermal and rheological signatures of past fault slip. A network of minor, glossy, iridescent silica fault mirrors (FMs) cut Paleoproterozoic gneiss in the Wasatch fault zone (WFZ), Utah. We report field to nanoscale observations from scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy with energy‐dispersive X‐ray spectroscopy of a silica FM to infer deformation mechanisms during FM development. The FM volume comprises a ∼40–90 μm‐thick basal layer of sintered, µm‐ to nm‐diameter silica particles with polygonal to anhedral morphologies, pervasive crystalline Ti‐bearing phases containing measurable N, and µm‐ to nm‐scale void spaces. Silica particles lack shape and crystallographic preferred orientation and some are predominantly amorphous with internal crystalline domains. The basal layer is overlain by a ∼10–130 nm‐thick, chemically heterogeneous, amorphous film at the FM interface. Mass balance calculations of Ti in the basal layer and host rock indicate the FM volume can be sourced from the underlying gneiss. Multiple textural and geochemical lines of evidence, including N substitution in Ti‐bearing phases, support temperature rise during deformation, associated amorphization of host gneiss, and creation of the FM volume. During thermal decay, interstitial anatase and titanite fully crystallized, silica textures capture their incipient crystallization, and some residual elements are solidified in the nanofilm. Our results support a mechanism of weakening and re‐strengthening of silica FM during fault slip and, together with data from adjacent hematite FMs, record shallow, ancient microseismicity in the WFZ.

     
    more » « less
  2. Abstract

    Different semicrystalline polymers including poly(l‐lactic acid), poly(ethylene terephthalate), syndiotactic polystyrene, and polyamide 12 are studied in terms of their mechanical response to uniaxial compression deformation. Apparent decoupling of yielding of amorphous and crystalline phases is identified as separate peaks in the stress–strain curve in the vicinity of the glass transition temperature. The same feature is also observed for the uniaxial extension of predrawn semicrystalline poly(ethylene terephthalate). It is indicated that in absence of a strong amorphous phase a semicrystalline polymer is unable to yield and undergo plastic deformation and it fails in a brittle manner in the uniaxial compression. Treating a semicrystalline polymer as a composite of amorphous and crystalline phases, putting emphasis on the crucial role of amorphous phase in acting as connectors between crystalline domains and indicating that the yielding of amorphous phase is a prerequisite for yielding of crystalline phase, work toward a better understanding of the mechanical properties of semicrystalline polymers at the molecular level is done.

     
    more » « less
  3. Abstract

    Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5−δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.

     
    more » « less
  4. Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation behaviors, and multiscale materials modelling.

     
    more » « less
  5. Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage. 
    more » « less