skip to main content


Title: FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants
Abstract

FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function, similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features.

Database URL: https://www.fatplants.net/

 
more » « less
Award ID(s):
1829365
PAR ID:
10530785
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Database
Volume:
2024
ISSN:
1758-0463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Glycan microarrays are capable of illuminating the interactions of glycan-binding proteins (GBPs) against hundreds of defined glycan structures, and have revolutionized the investigations of protein–carbohydrate interactions underlying numerous critical biological activities. However, it is difficult to interpret microarray data and identify structural determinants promoting glycan binding to glycan-binding proteins due to the ambiguity in microarray fluorescence intensity and complexity in branched glycan structures. To facilitate analysis of glycan microarray data alongside protein structure, we have built the Glycan Microarray Database (GlyMDB), a web-based resource including a searchable database of glycan microarray samples and a toolset for data/structure analysis.

    Results

    The current GlyMDB provides data visualization and glycan-binding motif discovery for 5203 glycan microarray samples collected from the Consortium for Functional Glycomics. The unique feature of GlyMDB is to link microarray data to PDB structures. The GlyMDB provides different options for database query, and allows users to upload their microarray data for analysis. After search or upload is complete, users can choose the criterion for binder versus non-binder classification. They can view the signal intensity graph including the binder/non-binder threshold followed by a list of glycan-binding motifs. One can also compare the fluorescence intensity data from two different microarray samples. A protein sequence-based search is performed using BLAST to match microarray data with all available PDB structures containing glycans. The glycan ligand information is displayed, and links are provided for structural visualization and redirection to other modules in GlycanStructure.ORG for further investigation of glycan-binding sites and glycan structures.

    Availability and implementation

    http://www.glycanstructure.org/glymdb.

    Contact

    wonpil@lehigh.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract

    Structural information of protein–protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. TheDockgroundresource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently,Dockgroundcontains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model–model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. TheDockgroundbound proteins dataset is a core set, from which otherDockgrounddatasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein–protein complexes. This report on theDockgroundresource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a newDockgroundinteractive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy.

     
    more » « less
  3. Abstract Motivation

    Membrane proteins are encoded by approximately one fifth of human genes but account for more than half of all US FDA approved drug targets. Thanks to new technological advances, the number of membrane proteins archived in the PDB is growing rapidly. However, automatic identification of membrane proteins or inference of membrane location is not a trivial task.

    Results

    We present recent improvements to the RCSB Protein Data Bank web portal (RCSB PDB, rcsb.org) that provide a wealth of new membrane protein annotations integrated from four external resources: OPM, PDBTM, MemProtMD and mpstruc. We have substantially enhanced the presentation of data on membrane proteins. The number of membrane proteins with annotations available on rcsb.org was increased by ∼80%. Users can search for these annotations, explore corresponding tree hierarchies, display membrane segments at the 1D amino acid sequence level, and visualize the predicted location of the membrane layer in 3D.

    Availability and implementation

    Annotations, search, tree data and visualization are available at our rcsb.org web portal. Membrane visualization is supported by the open-source Mol* viewer (molstar.org and github.com/molstar/molstar).

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract

    Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis‐regulatory elements (CREs) in promoters of isoprene‐responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene‐responsive genes were characterized using the Arabidopsis cis‐regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT‐1, MYB, and WRKY transcription factors, and light‐responsive elements were overrepresented in promoters of isoprene‐responsive genes; CBF‐, HSF‐, WUS‐binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene‐responsive genes were mainly those important for stress responses: drought‐, salt/osmotic‐, oxidative‐, herbivory/wounding and pathogen‐stress. More than half of the isoprene‐responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD‐ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD‐zipper‐loop‐zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein‐related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD‐ZIP family START‐domain‐containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross‐talk between isoprene‐mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.

     
    more » « less
  5. Abstract

    BindingDB (bindingdb.org) is a public, web-accessible database of experimentally measured binding affinities between small molecules and proteins, which supports diverse applications including medicinal chemistry, biochemical pathway annotation, training of artificial intelligence models and computational chemistry methods development. This update reports significant growth and enhancements since our last review in 2016. Of note, the database now contains 2.9 million binding measurements spanning 1.3 million compounds and thousands of protein targets. This growth is largely attributable to our unique focus on curating data from US patents, which has yielded a substantial influx of novel binding data. Recent improvements include a remake of the website following responsive web design principles, enhanced search and filtering capabilities, new data download options and webservices and establishment of a long-term data archive replicated across dispersed sites. We also discuss BindingDB’s positioning relative to related resources, its open data sharing policies, insights gleaned from the dataset and plans for future growth and development.

     
    more » « less