This content will become publicly available on July 16, 2025
- Award ID(s):
- 2305018
- PAR ID:
- 10530835
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- Supramolecular Chemistry
- ISSN:
- 1061-0278
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Octa-acid (OA) and tetra- endo -methyl octa-acid (TEMOA) are deep cavity cavitands that readily form multimeric complexes with hydrophobic guests, like n -alkanes, in aqueous solution. Experimentally, OA displays a monotonic progression from monomeric to dimeric complexes with n -alkanes of increasing length, while TEMOA exhibits a non-monotonic progression from monomeric, to dimeric, to monomeric, to dimeric complexes over the same range of guest sizes. Previously we have conducted simulations demonstrating this curious behavior arises from the methyl units ringing TEMOA's portal to its hydrophobic pocket barring the possibility for two alkane chains to simultaneously bridge between two hosts in a dimer. Here we expand our prior simulation study to consider the partially methylated hosts mono- endo -methyl octa-acid, 1,3-di- endo -methyl octa-acid, and tri- endo -methyl octa-acid to examine the emergence of non-monotonic assembly behavior. Our simulations demonstrate a systematic progression of non-monotonic assembly with increasing portal methylation. This behavior is traced to the progressive destabilization of 2 : 2 complexes (two hosts assembled with two guests) rather than stabilizing other potential host/guest complexes that could be formed.more » « less
-
Asphaltenes are the heaviest and most polarizable fractions of crude oil. During the oil production process, changes in the temperature, pressure, and oil composition can destabilize asphaltenes. This destabilization leads to asphaltene aggregation and deposition, which can cause major clogging problems in both the wellbore and near-wellbore regions as well as the production facilities. In this study, we developed and investigated the application of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid (AA–AMPS)-functionalized magnetic nanoparticles as a surface coating in inhibiting asphaltene deposition. The use of the porous media microfluidic platform allows for efficient evaluation of the effectiveness of the nanoparticle coating in mitigating asphaltene deposition in various crude oils. We demonstrated that the nanoparticle coating is effective in inhibiting asphaltene deposition, showing up to a 75% improvement in permeability change. The study also explores the dynamics of asphaltene aggregation and deposition in different crude oils. We identified factors such as asphaltene aggregate size as well as the physical and chemical characteristics of the aggregates that can determine the effectiveness of different mitigation methods.more » « less
-
Synthesis of high-purity Li 2 S nanocrystals via metathesis for solid-state electrolyte applicationsLi 2 S is the key precursor for synthesizing thio-LISICON electrolytes employed in solid state batteries. However, conventional synthesis techniques such as carbothermal reduction of Li 2 SO 4 aren't suitable for the generation of low-cost, high-purity Li 2 S. Metathesis, in which LiCl is reacted with Na 2 S in ethanol, is a scalable synthesis method conducted at ambient conditions. The NaCl byproduct is separated from the resulting Li 2 S solution, and the solvent is removed by evaporation and thermal annealing. However, the annealing process reveals the presence of oxygenated impurities in metathesis Li 2 S that are not usually observed when recovering Li 2 S from ethanol. In this work we investigate the underlying mechanism of impurity formation, finding that they likely derive from the decomposition of alkoxide species that originate from the alcoholysis of the Na 2 S reagent. With this mechanism in mind, several strategies to improve Li 2 S purity are explored. In particular, drying the metathesis Li 2 S under H 2 S at low temperature was most effective, resulting in high-purity Li 2 S while retaining a beneficial nanocrystal morphology (∼10 nm). Argyrodite electrolytes synthesized from this material exhibited essentially identical phase purity, ionic conductivity (3.1 mS cm −1 ), activation energy (0.19 eV), and electronic conductivity (6.4 × 10 −6 mS cm −1 ) as that synthesized from commercially available battery-grade Li 2 S.more » « less
-
Science still does not have the ability to accurately predict the affinity that ligands have for proteins. In an attempt to address this, the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) series of blind predictive challenges is a community-wide exercise aimed at advancing computational techniques as standard predictive tools in rational drug design. In each cycle, a range of biologically relevant systems of different levels of complexity are selected to test the latest modeling methods. As part of this on-going exercise, and as a step towards understanding the important factors in context dependent guest binding, we challenged the computational community to determine the affinity of a series of negatively and positively charged guests to two constitutionally isomeric cavitand hosts: octa-acid 1 , and exo -octa acid 2 . Our affinity determinations, combined with molecular dynamics simulations, reveal asymmetries in affinities between host–guest pairs that cannot alone be explained by simple coulombic interactions, but also point to the importance of host–water interactions. Our work reveals the key facets of molecular recognition in water, emphasizes where improvements need to be made in modelling, and shed light on the complex problem of ligand-protein binding in the aqueous realm.more » « less
-
Abstract Glycosylated proteins, namely glycoproteins and proteoglycans (collectively called glycoconjugates), are indispensable in a variety of biological processes. The functions of many glycoconjugates are regulated by their interactions with another group of proteins known as lectins. In order to understand the biological functions of lectins and their glycosylated binding partners, one must obtain these proteins in pure form. The conventional protein purification methods often require long times, elaborate infrastructure, costly reagents, and large sample volumes. To minimize some of these problems, we recently developed and validated a new method termed capture and release (CaRe). This method is time‐saving, precise, inexpensive, and it needs a relatively small sample volume. In this approach, targets (lectins and glycoproteins) are captured in solution by multivalent ligands called target capturing agents (TCAs). The captured targets are then released and separated from their TCAs to obtain purified targets. Application of the CaRe method could play an important role in discovering new lectins and glycoconjugates. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Preparation of crude extracts containing the target proteins from soybean flourAlternate Protocol 1 : Preparation of crude extracts from Jack bean mealAlternate Protocol 2 : Preparation of crude extracts from the corms ofColocasia esculenta ,Xanthosoma sagittifolium , and from the bulbs ofAllium sativum Alternate Protocol 3 : Preparation ofEscherichia coli cell lysates containing human galectin‐3Alternate Protocol 4 : Preparation of crude extracts from chicken egg whites (source of ovalbumin)Basic Protocol 2 : Preparation of 2% (v/v) red blood cell suspensionBasic Protocol 3 : Detection of lectin activity of the crude extractsBasic Protocol 4 : Identification of multivalent inhibitors as target capturing agents by hemagglutination inhibition assaysBasic Protocol 5 : Testing the capturing abilities of target capturing agents by precipitation/turbidity assaysBasic Protocol 6 : Capturing of targets (lectins and glycoproteins) in the crude extracts by target capturing agents and separation of the target‐TCA complex from other components of the crude extractsBasic Protocol 7 : Releasing the captured targets (lectins and glycoproteins) by dissolving the complexBasic Protocol 8 : Separation of the targets (lectins and glycoproteins) from their respective target capturing agentsBasic Protocol 9 : Verification of the purity of the isolated targets (lectins or glycoproteins)