skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Divisors computing minimal log discrepancies on lc surfaces
Abstract Let$$(X\ni x,B)$$be an lc surface germ. If$$X\ni x$$is klt, we show that there exists a divisor computing the minimal log discrepancy of$$(X\ni x,B)$$that is a Kollár component of$$X\ni x$$. If$$B\not=0$$or$$X\ni x$$is not Du Val, we show that any divisor computing the minimal log discrepancy of$$(X\ni x,B)$$is a potential lc place of$$X\ni x$$. This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.  more » « less
Award ID(s):
1952522 1801851
PAR ID:
10531081
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Mathematical Proceedings of the Cambridge Philosophical Society
Volume:
175
Issue:
1
ISSN:
0305-0041
Page Range / eLocation ID:
107 to 128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums. 
    more » « less
  2. Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$. 
    more » « less
  3. Abstract For a smooth projective surface$$X$$satisfying$$H_1(X,\mathbb{Z}) = 0$$and$$w \in H^2(X,\mu _r)$$, we study deformation invariants of the pair$$(X,w)$$. Choosing a Brauer–Severi variety$$Y$$(or, equivalently, Azumaya algebra$$\mathcal{A}$$) over$$X$$with Stiefel–Whitney class$$w$$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on$$Y$$constructed by Yoshioka (or, equivalently, moduli spaces of$$\mathcal{A}$$-modules of Hoffmann–Stuhler). We show that the invariants do not depend on the choice of$$Y$$. Using a result of de Jong, we observe that they are deformation invariants of the pair$$(X,w)$$. For surfaces with$$h^{2,0}(X) \gt 0$$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on$$X$$. This can be seen as a$${\rm PGL}_r$$–$${\rm SL}_r$$correspondence. As an application, we express$${\rm SU}(r) / \mu _r$$Vafa–Witten invariants of$$X$$in terms of$${\rm SU}(r)$$Vafa–Witten invariants of$$X$$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on$$X$$with given division algebra at the generic point. 
    more » « less
  4. Abstract Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$$\omega $$,$$\zeta $$, and$$\eta $$denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$$\omega $$. If$$\mathcal {L}$$is a computable copy of$$\omega $$that is computably isomorphic to the usual presentation of$$\omega $$, then every cohesive power of$$\mathcal {L}$$has order-type$$\omega + \zeta \eta $$. However, there are computable copies of$$\omega $$, necessarily not computably isomorphic to the usual presentation, having cohesive powers not elementarily equivalent to$$\omega + \zeta \eta $$. For example, we show that there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \eta $$. Our most general result is that if$$X \subseteq \mathbb {N} \setminus \{0\}$$is a Boolean combination of$$\Sigma _2$$sets, thought of as a set of finite order-types, then there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$$, where$$\boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$$denotes the shuffle of the order-types inXand the order-type$$\omega + \zeta \eta + \omega ^*$$. Furthermore, ifXis finite and non-empty, then there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \boldsymbol {\sigma }(X)$$. 
    more » « less
  5. Abstract We show that for any setDof at least two digits in a given baseb, almost all even integers taking digits only inDwhen written in basebsatisfy the Goldbach conjecture. More formally, if$$\mathcal {A}$$is the set of numbers whose digits basebare exclusively fromD, almost all elements of$$\mathcal {A}$$satisfy the Goldbach conjecture. Moreover, the number of even integers in$$\mathcal {A}$$which are less thanXand not representable as the sum of two primes is less than$$|\mathcal {A}\cap \{1,\ldots ,X\}|^{1-\delta }$$. 
    more » « less